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Abstract

Real-time signal processing applications are commonly
designed using a dataflow software architecture. Here we
attempt to understand fundamental real-time properties of
such an architecture — the Navy’s coarse-grain Processing
Graph Method (PGM).

By applying recent results in real-time scheduling theory
to the subset of PGM employed by the ARPA RASSP Syn-
thetic Aperture Radar benchmark application, we identify
inherent real-time properties of nodes in a PGM dataflow
graph, and demonstrate how these properties can be ex-
ploited to perform useful and important system-level anal-
yses such as schedulability analysis, end-to-end latency
analysis, and memory requirements analysis. More impor-
tantly, we develop relationships between properties such
as latency and buffer bounds and show how one may be
traded-off for the other. Our results assume only the ex-
istence of a simple EDF scheduler and thus can be easily
applied in practice.

1 Introduction

Signal processing algorithms are often defined in the
literature using large grain dataflow graphs [12]: directed
graphs in which a node is a sequential program that ex-
ecutes from start to finish in isolation (i.e., without syn-
chronization), and the graph edges depict the flow of data
from one node to the next. Thus, an edge represents a
producer/consumer relationship between two nodes. Large
grain dataflow provides a natural description of signal pro-
cessing applications with each node representing a mathe-
matical function to be performed on an infinite stream of
data that flows on the arcs of the graph. The streams of
input data are typically generated by sensors sampling the
environment at periodic rates and sending the samples to
the signal processor via an external channel. The dataflow
methodology allows one to easily understand the signal pro-
cessing performed by depicting the structure of the algo-
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rithm; any portion of the application can be understood in
the absence of the rest of the algorithm.

Embedded signal processing applications are naturally
defined using dataflow techniques. As real-time applica-
tions, they require deterministic performance. The signal
processing graph must process data at the rates of a set of
external devices (e.g., sonobuoys, dipping sonars, or radars)
without the loss of data. Hence signal processing applica-
tions, like other real-time systems, have a dual notion of
correctness: logical and temporal. It is not sufficient to
only produce the correct output — e.g., the signature of
a detected target; embedded signal processing applications
must produce the correct output within the correct time in-
terval — e.g., detect the signature within 1 second.

Dataflow models implicitly define a temporal semantics
for a processing graph by specifying lower bounds on when
nodes may execute as a function of the availability of data
on input edges. However, most models do not support the
specification of either an end-to-end latency constraint or
an upper bound on the time that may elapse between when
a node becomes eligible to execute and the time the node
either commences or completes execution. Without one of
these specifications, we are left with:

e no schedulability or admission control test — How
does one determine if a set of nodes or a graph “fits”
on a processor?

e undetermined latency properties — How does one de-
termine if a graph meets its timing requirements?

e no upper bound on queue length — If latency is not
bounded, memory requirements for a graph cannot be
bounded and hence data loss may occur if enough stor-
age is not provided.

System engineers use such metrics to size hardware and
perform requirements verification. A cost trade-off may be
made on CPU utilization versus latency, or buffer space
versus latency. High latency tolerances allow the use of
a slower (and cheaper) CPU but may require more mem-
ory for increased buffer space. On the other hand, tighter
latency requirements may demand a faster CPU (or lower
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utilization) but less memory. In keeping costs in line, a sys-
tem architect uses these metrics to make fundamental de-
sign trade-offs.

Unfortunately, without the application of real-time
scheduling theory to dataflow methodologies and a precise
execution model, system architects have not been able to
make these trade-offs in real-time dataflow systems. Even
the Navy’s own dataflow methodology, Processing Graph
Method (PGM) [16], lacks real-time analysis techniques to
support making cost trade-offs or to verify latency require-
ments. This is somewhat surprising since PGM is used
to develop real-time, embedded, anti-submarine warfare
(ASW) applications for the AN/UYS-2A (the Navy’s stan-
dard signal processor). PGM has also been used to create
a real-time Ka-band synthetic aperture radar (SAR) bench-
mark application for ARPA’s Rapid Prototyping of Appli-
cation Specific Signal Processors (RASSP) project.

In this paper, we present a novel application of real-time
scheduling theory to the subset of PGM used in the RASSP
SAR benchmark application. Using the SAR application
graph as a driving problem, we identify inherent relation-
ships existing in real-time dataflow that have not been rec-
ognized in the literature. We present theorems that char-
acterize the non-trivial execution rates of every node in the
dataflow graph as a function of input rates by applying ex-
isting real-time scheduling theory to the dataflow methodol-
ogy. From scheduling theory, we get a scheduling condition
for preemptive earliest deadline first (EDF) scheduling al-
gorithms. If the scheduling condition returns an affirmative
result, the graph can be scheduled (with a preemptive EDF
algorithm) to meet specified execution deadlines. We also
show how to set the deadline parameters to bound end-to-
end latency and memory requirements.

The rest of this paper is organized as follows. Our results
are related to other work in Section 2. Section 3 presents
a brief overview of the portion of PGM used by the SAR
graph, which is introduced in Section 4. Section 5 presents
node execution rates and a schedulability condition for EDF
scheduling. Section 6 addresses latency issues and Section
7 shows how to bound the buffer requirements of an imple-
mentation of a graph. We summarize our contributions in
Section 8.

2 Related Work

This research was inspired by the analysis techniques
applied to three different dataflow models: the dataflow
graphs found in the Software Automation for Real-Time
Operations (SARTOR) project led by Mok [14, 15], Lee and
Messerschmitt’s Synchronous Dataflow (SDF) graphs [12]
supported by the Ptolemy system [4], and the Real-Time
Producer/Consumer (RTP/C) paradigm of Jeffay [8]. Un-
fortunately, none of these paradigms (or any other dataflow
paradigms from the literature) correctly model the execu-
tion of PGM graphs.

The dataflow graphs of the SARTOR project have dif-
ferent (and incompatible) node execution rules from PGM.
As with the SARTOR project, our goal is to demonstrate
that we can apply real-time scheduling results to real-life
applications.

Like the RTP/C paradigm, we use the structure of the
graph to help specify execution rates of the processes. How-
ever, our execution model is capable of supporting much
more sophisticated data flow models than RTP/C. Whereas
RTP/C models processes as sporadic tasks, our paradigm
uses the Rate-Based Execution (RBE) process model of
[10] to more accurately predict processor demand. (The
RBE process model is a generalization of sporadic tasks
and the Linear-Bounded Arrival Process (LBAP) model
employed by the DASH system [1].) Unlike the RTP/C
paradigm, PGM supports And nodes (nodes that are eligi-
ble to execute only when all of the input queues are over
threshold), which introduces different execution properties
than those of the RTP/C paradigm.

The SDF graphs of Ptolemy utilize a subset of the fea-
tures supported by PGM. In addition to supporting a more
general dataflow model, our research differs from [12]
in that we use dynamic, real-time, scheduling techniques
rather than creating static schedules.

Our latency analysis is related to the work of Gerber et
al. in guaranteeing end-to-end latency requirements on a
single processor [6]. Our work differs from [6] in that we
cannot assume a periodic task model and that our node ex-
ecution rates are derived from the input data rate and the
graph. Moreover, unlike [6], we do not introduce new (ad-
ditional) tasks for the purpose of synchronization.

3 Dataflow Model

This section describes the features of PGM used in the
SAR graph. For a complete description of PGM, see [16].

In PGM, a system is expressed as a directed graph of
large grain nodes (processing functions) and edges (logi-
cal communication channels). The topology of the graph
defines the flow of data from an input source to an out-
put sink, defining a software architecture independent of the
hardware hosting the application. The edges of a graph are
typed First-In-First-Out (FIFO) queues. The data type of
the queue indicates the size of each token (a data structure)
transported from a producer to a consumer. Tokens are ap-
pended to the tail of the queue (by the producer) and read
from the head (by the consumer). The tail of a queue can
be attached to at most one node at any time. Likewise, the
head of a queue can be attached to at most one node at any
time.

There are three attributes associated with a queue: a
produce, threshold, and consume amount. The produce

1In PGM, aproduce, threshold, or consume attributes is associated with
anode port rather than the queue. For the subset of PGM used by the SAR



amount specifies the number of tokens atomically appended
to the queue when the producing node completes execu-
tion. The threshold amount represents the minimum num-
ber of tokens required to be present in the queue before
the node may process data from the input queue. The con-
sume amount is the number of tokens dequeued (from the
head of the queue) after the processing function finishes ex-
ecution. A queue is over threshold if the number of en-
queued tokens meets or exceeds the threshold amount. Un-
like many dataflow paradigms, PGM allows non-unity pro-
duce, threshold, and consume amounts as well as a con-
sume amount less than the threshold. The only restrictions
on queue attributes is that they must be non-negative values
and the consume amount must be less than or equal to the
threshold. For example, a queue may have a produce of 2,
a threshold of 5, and a consume of 3.

Although PGM supports general graphs consisting of
nodes with multiple input queues and variable produce and
consume values, the SAR graph does not use these features.
Since our driving application has the topology of a chain of
nodes, for space consideration we restrict our analysis to
chains and simply note that all of the results presented in
this paper can be extended to general PGM graphs.

4 SAR Graph

This section introduces the SAR graph including a brief
description of the processing performed by each node in the
graph. This information is provided for concreteness for the
reader with a signal processing background. The actual log-
ical operation of the SAR graph is immaterial to the results
we derive and the analyses we perform. The only essential
properties of the SAR graph are those that influence node
execution; the produce, consume, and threshold values for
each node. For a more detailed description of the process-
ing performed by the SAR benchmark, see [17].

The full SAR benchmark cannot execute in real-time on
a single processor. Therefore, the RASSP project allocates
a portions of the full SAR graph to individual processors.
The graph in Figure 1 is one such allocation. This graph,
called the “mini-SAR”, was originally created to test tools
developed by the RASSP project. It performs the range and
azimuth compression processing in the formation of an im-
age that is one eighth the size of that formed by the full
SAR benchmark. Henceforth, we shall refer to the mini-
SAR graph as the SAR graph since an analysis similar to
what we develop shortly, could be performed on each pro-
cessor to analyze the full application.

The source node for the SAR graph (shown in Figure 1)
is labeled YRange and represents a periodic external device
that produces data for the graph. The sink node, represents
an external device that executes whenever data is available

application, it is easier to associate these attributes with the queue rather
than the node.

on the Image queue. The nodes and queues of this graph
have mnemonic labels. (For a generic chain, we would la-
bel the source node Ny and the sink node N,, 1. The output
queue for node N; would be labeled @;.) Produce, thresh-
old, and consume values are annotated below the queue.
For example, the produce, consume, and threshold values
of the queue labeled Range are all 118.

The top row of nodes in the SAR graph each operate on
one pulse of data at a time. The pulse delivered by the ex-
ternal source, labeledYRange, has already been converted
to complex-valued data and consists of 118 range gate sam-
ples. The Zero Fill node pads the pulse with zeroes to cre-
ate a pulse length of 256 samples in preparation for the
FFT node. Before performing the FFT, the data is passed
through a Kaiser window function, represented by the node
Window Data, to reduce sidelobe levels and perform band-
pass filtering. After being compressed in the range dimen-
sion by the Range FFT node, the pulse is passed through the
radar cross section calibration filter performed by the RCS
Mult node.

Unlike the previous nodes in the SAR graph, which re-
quire only one pulse of data before being eligible for exe-
cution, the Corner Turn node requires 128 pulses of data.
A 2-D processing array is formed where each row of the ar-
ray contains one sample from the 128 different pulses and
each column contains the 256 range gates that form a pulse.
The processing array consists of two 64 x 256 frames (or
sequences of pulses). As a new frame is loaded in, the pre-
vious two frames are “released” with the oldest frame being
shifted out. This processing is achieved with threshold and
produce values of 256 - 128 and a consume value of 256 - 64.

Convolution processing is performed on each row of the
2-D matrix by the Azimuth FFT, Kernel Mult, and Azimuth
IFFT nodes. The Azimuth FFT node performs a FFT on the
signal, which has been aligned in the azimuth dimension.
Next the Kernel Mult node multiplies each row of the matrix
by a convolution kernel. Before the SAR image is output to
the Sink node, an inverse FFT is performed by the Azimuth
IFFT node.

5 Execution Model

Real-time scheduling theory provides a framework upon
which we have developed an execution model that sup-
ports bounding latency and memory usage for PGM graphs.
These bounds in turn can be used to guarantee no data loss
occurs during graph execution. We also appeal to schedul-
ing theory to provide guarantees that these bounds will be
met without the need to check for violations during graph
execution (assuming the basic assumptions made during the
analysis phase are true at run-time).

This section introduces an execution paradigm and
analysis techniques that support the evaluation of real-
time properties for a graph. The first subsection ex-
plores fundamental execution relationships that exist be-
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Figure 1: SAR Graph

tween producer/consumer nodes, independent of the exe-
cution model. The remaining subsections address node ex-
ecution rates and the RBE task model. These concepts are
used to model an implementation of the graph.
5.1 Node Executions

Before exploring the fundamental execution relation-
ships that exist between producer/consumer nodes, we must
first define the restrictions on node execution. In accor-
dance with PGM, our execution model requires all of the
input queues to a node to be over threshold before the node
is eligible for execution. Standard practice in implementing
dataflow systems ([8, 12, 15]), though not part of the PGM
specification, is to disallow two overlapping executions of
the same node; we have adopted this restriction. PGM also
requires that data be read from an input queue at the be-
ginning of node execution, but data is consumed after the
node has produced data on its output queues, which simply
makes it clear that a node requires simultaneous input and
output buffer space. We add the common real-time dataflow
restriction that no data loss can occur during graph execu-
tion. The following definitions provide a formal basis for
discussing the execution of nodes.

Definition 5.1. Node N; is eligible for execution when all
of its input queues are over threshold.

Definition 5.2. The execution of a node is valid if and only
if: (1) the node executes only when it is eligible for execu-
tion, no two executions of the same node overlap, (2) each
input queue has its data atomically consumed after each
output queue has its data atomically produced, and (3) data
is produced at most once on an output queue during each
node execution.

Definition 5.3. The execution of a graph is valid if and only
if all of the nodes in the execution sequence have valid ex-
ecutions and no data loss occurs.

We introduce the execution relationship that exists be-
tween producer/consumer nodes using the two node por-
tion of a generic chain shown in Figure 2. Unlike the SAR

graph, Chain; of Figure 2 contains a queue whose pro-
duce, threshold, and consume values are relatively prime —
this is done to illustrate the general relationships between
dataflow attributes and node execution. N; produces 4 to-
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Figure 2: Chain,

kens every time it executes. NV; 1 has a threshold of 7 and
consumes 3 after it executes. Consequently, IV; must fire
twice before @Q; is over threshold and V;;1 executes for the
first time. After N;,1 executes, it consumes only 3 tokens
— leaving 5 tokens on @;. The third execution of N; pro-
duces 4 more tokens (for a total of 9 tokens on @Q;) and
N;1 executes again, consuming 3 more tokens. The next
execution of N; results in 10 tokens on @;, and N, is
able to execute twice — leaving 4 tokens on @;, which is
the same number that were on @) ; after the first execution of
N;. Hence, subsequent executions of N; and N;; follow
this same pattern.

The following lemma establishes the relationship for the
number of executions of N, as a function of the number
of tokens produced by N;.

Lemma5.1. Givenr > 7; tokens on @;, N;4+1 will execute
[T “J + 1 times, consume ([T “J + 1) - ¢; tokens, and
leave 7' tokens on Q; where (7; — ¢;) <7’ < 7;.

Proof:2 The number of times N;,; will execute is the least

natural number n such that r — (n - ¢;) < 74, which implies
n > (r — 7;)/c;. The smallest natural number satisfying

2We thank the anonymous reviewer who suggested this proof and the
proof of Lemmabs.2.



consumes c; tokens from @Q;, it immediately follows that
the number of tokens consumed is ([T:—TJ + 1) -¢;. The
number of tokens left on Q;, ', is at least (7; — ¢;) since if
r' < 1; — ¢;, the last execution was not enabled. Further-
more, if ¥’ > 7;, another execution is enabled. Therefore,
(1; — ¢;) < 7' < 74, and the lemma holds. O

this inequality is [";—TJ + 1. Since each execution of N; ;1

Lemma 5.1 establishes the execution relationship that
exists between producer/consumer nodes, but it does not
tell us the frequency with which the node will execute —
only how many times the consumer will execute given some
number of tokens generated by the producer. The rate at
which nodes execute is the subject of the next section.

5.2 Node Execution Rates

PGM does not explicitly define temporal properties for
the graph. However, the execution rate of every node in a
graph is defined by the graph topology, the definition of
nodes, the dataflow attributes, and the rate at which the
source node produces data. Thus, given only the rate at
which a source node delivers data, the execution rates of
all other nodes can be derived. This fundamental property
of real-time dataflow is the basis of the results presented in
this section.

Most real-time execution models define task execution
to be periodic or sporadic. Each time a task is ready to ex-
ecute, it is said to be released. A periodic task is released
exactly once every p time units (and p is called the period
of the task). At least p time units separate every release of
a sporadic task — no upper bound is given on subsequent
releases of a sporadic task. Even when the source node of
a PGM chain is periodic, the execution of the other nodes
in the graph cannot be described as either periodic or spo-
radic. For example, consider Chain, of Figure 2. If N;
executes at times 0, y, 2y, ..., N1 is eligible for one ex-
ecution at y and 2y, but twice at time 3y. For this instance
of the problem, we may be able to model N;; as two peri-
odic or sporadic tasks (that interleave their execution), but
this technique does not generalize. If the consume value is
5 rather than 3, we get a very different execution pattern.
When the source is not periodic and data arrives in bursts,
which is common in many implementations, even modeling
a node as z invocations of a (1, y) periodic or sporadic task
is insufficient. An execution paradigm that supports generic
rates of the form z executions in y time units is required to
analyze the execution of generic dataflow graphs.

We assume the strong synchrony hypothesis of [5] to
introduce the concept of node execution rates. Under the
synchrony hypothesis, we assume the graph executes on an
infinitely fast machine. Hence, each node takes “no time”
to execute and data passes from source to sink node instan-
taneously. The synchrony hypothesis lets us define rate ex-

ecutions in the absence of scheduling algorithms and dead-
lines. Node execution rates are defined as follows.

Definition 5.4. The time of the j¢* execution of node NV; is
represented as 7 ;.

Definition 5.5. An execution rate is a pair (z,y). A node
N;, Vi > 0, executes at rate R; = (z;,y;) if, Vj > 0, NV;
executes exactly z; times in all time intervals of [t + y; -
(j—1),t+y;-j)wheret > T; ;.

Throughout this paper, we assume constant produce,
threshold, and consume values with ¢; < 7;. If the pro-
duce and consume values for a node are not constant, then
the node’s maximum produce and minimum consume val-
ues can be used to determine the maximum execution rate.
We also assume a periodic source. As implied by Theo-
rem 5.3, a periodic source is not required for our analysis
techniques. All lemmas and theorems in this paper can be
generalized to support the analysis of graphs that receive
data from source nodes specified by rates rather than peri-
ods.

Given a periodic source node, Ng, we present and prove
the execution rate for Ny, the second node in the chain.
Theorem 5.3 is a generalization of Lemma 5.2. Its proof,
and the proofs for all subsequent lemmas and theorems, can
be found in [7].

Lemma 5.2. Assuming the strong synchrony hypothesis
and no tokens on Q prior to the beginning of graph ex-
ecution, if Rp = (1, p) is the execution rate of Ny with
To,1 = 0, then Ry = (z1,y1) is the execution rate of Ny

where z; = p and y; =

__Pbo € . p
ged(po,co) ged(po,co)

Proof: Lett¢ > Ty, and r be the number of tokens on
Qo before any executions of Ny at time ¢. By Lemma 5.1,
7 —c < r < 1. Since Ry = (1,p), a total of
po - (co/ged(po, co)) tokens are enqueued on Qg over the
interval [t,t + y1). Since each execution of N; removes
¢o tokens, z, executions during the interval [t, ¢ + y1) will
leave r tokens on (Jo. Furthermore, no more executions
could have occurred since the z1** execution leaves r < 7o
tokens on Q. Any fewer executions would have leftr > 7
tokens on @), and another execution of V; would have oc-
curred. Therefore, exactly x;41 executions take place in
this interval.

Simple  induction
cute exactly

shows that N; will exe-

—P0___ times in all intervals of
ged(po,co)

6+ G =D gty p 4 ey ). V5> 0
where ¢ > T j,leaving r tokens on Qo at the end of each
interval. Therefore R, is a valid rate specification for
Ny, O

Theorem 5.3. Vi > 0: Assuming the strong synchrony
hypothesis and no tokens on @; prior to the beginning of



graph execution, if Ry = (x0,y0) is the execution rate of
Np, then the execution rate of N;11 IS Ri+1 = (Zit1, Yit1)

o e =i .
where Tip1 = x; and Yit1 = ged(pi,c:) Yi

Theorem 5.3 can be used to derive the execution rate
of every node in the SAR graph. For example, assum-
ing Ry range = (1,y) is the execution rate of the source

node, the execution rates of the other nodes in the SAR

graph are: Rzerorit = RBwindowData = RRangeFFT =
RRC’SMult = (1,.1/). RC’OTnerTurn = (17649)! and
RAzimuthFFT = RierneMut = RazimwhIFFT =

(256, 64y). We will use these numbers later to develop la-
tency and buffer bounds.
5.3 RBE Task Modéel

Moving from the strong synchrony hypothesis to an ac-
tual implementation, we need to implement the graph as
one or more tasks. A scheduling algorithm and a schedu-
lability test that will analytically determine whether or not
a graph will meet its temporal requirements are also neces-
sary. We have already seen that nodes are neither periodic
nor sporadic, even when the source is periodic, which elim-
inates most execution models from the literature. Neverthe-
less, it is appealing to implement each node as a task that
is released when the input queue goes over threshold. If we
schedule the tasks using the preemptive earliest deadline
first (EDF) scheduling algorithm, we can verify the real-
time requirements of the application using the techniques
Jeffay has developed for the Rate Based Execution (RBE)
model [10].

RBE is a general task model that consists of a collec-
tion of independent processes specified by four parameters:
(z,y,d,e). The pair (z,y) represents the execution rate of
a RBE task where z is the number of executions expected
in an interval of length y. The response time parameter d
specifies the maximum time between release of the task and
the completion of its execution (i.e., d is the relative dead-
line). The parameter e is the maximum amount of processor
time required for one execution of the task.

In the RBE model, the ;" release of task T} at time ¢; ;
is guaranteed to complete execution by time D;(j), where

Di(j) = 4 i + ifl1<j<umz
= max(t;; + di, Di(j — x5) +ys) ifj >z
(5.1)

The second line of the deadline assignment function (5.1)
ensures that no more than x; deadlines come due in an in-
terval of length y;, even when more than x; releases of T;
occur in an interval of length y;.

Jeffay established and proved the following feasibility
condition for an RBE task set.

Theorem 54, Let T =
(TnyYn,dn,en)} be a set of tasks.
if and only if

{(x1,91,d1,€1),...
T will be feasible

VL >0, L>Zf<W>-xi-ei (5.2)
i=1 ¢

la] ifa>0
where f(a) = {0 ifa<0

In [10], Jeffay established sufficiency of (5.2) by show-
ing that the preemptive EDF scheduling algorithm can
schedule releases of the tasks in T without a task missing
a deadline if the task set satisfies (5.2). For a PGM graph,
(5.2) becomes a sufficient condition (but not necessary) for
preemptive EDF scheduling as long as nodes execute only
when their input queues are over threshold (i.e., the tasks
are released when the node’s input queue is over threshold
— thereby ensuring precedence constraints are met). (5.2)
is not a necessary condition since it assumes that all x; re-
leases of a node may occur at the beginning of an interval
of length y;. For some nodes, such as N;41 in Figure 2, this
is not possible.

Note that if the cumulative processor utilization for a
graph is strictly less than one (i.e., Y7, ‘“ye’ < 1) then
condition (5.2) can be evaluated efficiently (in pseudo-
polynomial time) using techniques developed in [2] and ap-
plied in [3] and [11].

6 Latency

A signal processing engineer describes latency as the
time delay between the sampling of a signal and the presen-
tation of the processed signal to the output device (which
may be a screen, speaker, or another computer). We use this
definition with a clarification. Since we can only measure
time in units of the period of the source, we consider the
po tokens delivered each period by Vg to be “one sample”;
each pulse in the SAR graph constitutes one sample, which
consists of 118 tokens. Hence, under the strong synchrony
hypothesis, latency is the delay between the enqueuing of
po tokens onto @)y by the source node Ny and the next en-
queuing of p,, tokens on (Q,, by node N,,.

Latency is a function of the scheduling algorithm. It is
the case for graph models, however, that latency also has a
structural component. The next section illustrates this prop-
erty.

6.1 Latency with the Strong Synchrony Hypothe-
sis

There is a pattern of executions that result in various la-
tency values for the input signal. Consider the execution
of the SAR graph shown in Figure 3. In this example, we
assume the strong synchrony hypothesis and each down ar-
row represents the release and instantaneous execution of a
node. The minimum latency for a sample is zero, which is
the case for the 128" pulse received by the SAR graph. As
shown in Figure 3, the 128" pulse arrives at time 127y, and
results in the execution of every node in the graph. Pulses
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Figure 3: Latency for the SAR graph under strong synchrony hypothesis. Each down arrow represents the release and

instantaneous execution of a node.

192, 256, 320, 384, ...all have a latency of 0. The maxi-
mum latency value, encountered by the first pulse, is 127yo.
The first signal received by the graph always encounters
the maximum latency (assuming the queues have no initial
data). There is, however, another “maximum” latency that
is of more interest, and that is the maximum latency that
occurs after the first execution of every node in the graph.
In the execution example shown in Figure 3 for the SAR
graph, this maximum latency is encountered by pulses 129,
193, 257, 321, ..., which have a latency of 63y. Notice
that there are 126 other unique latency values for this sim-
ple graph (e.g., the latency for pulse j+1 is (127 — 5)yo).

The latency encountered by a sample of the signal (under
the strong synchrony hypothesis) is dependent on the data
flow attributes of the graph and the state of the queues (i.e.,
the number of tokens on each queue of the graph) when
the sample arrives. We can determine the magnitude of a
sample’s latency by determining how many more samples
are required before node IV,, executes. Lemma 6.1 fulfills
this role.

Lemma 6.1. Givenry < 7 tokenson Qx Vk : i < k < j,
N; must execute F'(V;, N;) times to produce enough data
to put ;1 over threshold (and thus making V; eligible
for execution) where Vi, j : 0 <i<j<mn:

Ti—Ti
pi

[(F(Ni+1,Nj)—1)'Ci+Ti—Ti
Pi

ifi+1=j
F(N;,N;) =

] ifi+1<;

Evaluating F(No, N,,) just before the it* sample’s ar-
rival will tell us how many samples are required before
N, will be eligible for execution. Hence, as implied by
Lemma 6.2, the latency the it* sample will encounter is
given by (F'(No, Ny,) — 1) - yo when F'(No, N,,) is evalu-
ated just before the sample arrives. We subtract one from
F(No, N,,) before converting it to time units since the la-
tency interval begins after the sample arrives.

Lemma 6.2. Given Ry = (1, p). When F (N, N,,) is eval-
uated just before the sample’s arrival,

Sample Latency = (F(No,N,) —1)-p (6.1)
Applying Lemma 6.2 to the SAR graph, we find the

same latency values identified at the beginning of this sub-

section.

6.2 Latency in an Implementation

Scheduling an implementation of the graph results in an
upper and lower bound for each of the latency values iden-
tified with the strong synchrony hypothesis. In other words,
we get latency intervals rather than precise latency values
for a given sample.

The lower bound for a sample’s latency is a function
of the scheduling algorithm and, as shown in §6.1, the
graph attributes. The lower bound for the latency inter-
val is the latency value derived using (6.1) plus the sum
of the execution times for the nodes in the chain. That
is, a sample’s latency must be greater than or equal to
(F(No,Nn) = 1) - yo + 2202, €.

The upper bound for a sample’s latency is dependent on
the scheduling algorithm, dataflow attributes, and deadline
values. Generally, the deadline parameters are the only free
variables in the function. To determine a sample’s latency in
an implementation of the graph, we need to provide a value
for each d; in the RBE task set. Realizing that d; affects
latency, what should it be? How does d; affect latency?

We start by observing thatif,Vi : 1 <i < n,d; = y; and
the graph is not schedulable (i.e., (5.2) returns a negative
result) then the processor is overloaded since (5.2) reduces
to the Lui & Layland feasibility test [13] and we get 1 <
Zf LB _e’ We also observe that increasing d; > y; will
not |mprove latency and, as we will show later, increases
buffer requirements. Hence, we will set d; = y; and see
how this affects the upper bound for latency values.

Figure 4 shows an execution of the SAR graph with
d; = y;. In this figure, the light arrows represent the re-
lease time for NV; under the strong synchrony hypothesis
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Figure 4: Latency for the SAR graph. A light arrow represents a node’s release under the strong synchrony hypothesis. A
dark arrow represents the actual release time, and the node’s execution is represented by a box.

and the dark arrows represent the actual release time. We
see from Figure 4 that task Zero Fill is released at times
0, vo, 2yo, 3yo, ..., and the deadlines corresponding to
each release time is yo, 2yo, 3yo, ...Since di = y1 = Yo.
Due to scheduling and execution times, however, the task
Window Data is not released until times 0 + ey, yo + e1,
2yo +e1, 3yo +e€1, ..., and the corresponding deadlines are
0+e;+ds =yo+er,2yo+er, 3yo+ei,.... Inthisexam-
ple, the first execution of task Azimuth IFFT is released at
time ¢, which is after 128yy. Its deadline is ¢ 4+ 64yq, which
is after 192y0. Also note that the 256" execution of task
Azimuth IFFT completes execution by time 191y, — well
before its deadline.

The release times shown in Figure 4 for the tasks Zero
Fill and Window Data are the earliest possible release times.
As we have noted, the task Azimuth IFFT completes its
256" execution by time 191y, even though the deadline
for the first release of Azimuth IFFT is not until ¢ + 64yy.
This was no accident. All of the first 256 executions of
Azimuth IFFT will be released and complete execution be-
tween 127y and 191y,. To see this, we must look at the
earliest possible release time for the first execution of Az-
imuth IFFT and the schedulability condition (5.2). From
Lemma 6.2, we know that the first release of task Azimuth
IFFT cannot occur before 127yq. An affirmative result from
(5.2) means that there exists enough processor capacity for
nodes Ny thru Ny, 1 < ¢ < k < n, to execute Z& . z; times
during an interval of length ;. This means that 64 exe-
cutions of Zero Fill, Window Data, Range FFT, and RCS
Mult; 1 execution of Corner Turn; and 256 executions of
Azimuth FFT, Kernel Mult, and Azimuth IFFT will all com-
plete execution within 64y time units even when they are
all released at the same instant (i.e., when Zero Fill is first
released). We will exploit this fact, similarly to the way
Jeffay did in [9], to bound a sample’s latency.

We can use the release point derived with the strong syn-
chrony hypothesis and add d; to get the time at which N;

will have completed execution — even if this time is less
than the actual release time plus d;. Theorem 6.3 uses this
fact to provide a lower and upper bound for any sample’s
latency.

Theorem 6.3. Given Ry = (1, p) and a schedulable graph
inwhichVi: 1 <1< n:d; <d;t1,asample’s latency
under EDF scheduling with deadline assignment function
(5.1) is bounded such that

(F(No,N,) —1)-p+ > _e; < Sample Latency
=1

< (F(No, No) = 1) - p +dy

where F'(Ny, N,,) is evaluated just before the sample’s ar-
rival.

Theorem 6.3 tells us that if a graph is schedulable by
(5.2), task IV; will complete execution within d; time units
of the release time calculated under the strong synchrony
hypothesis. Therefore, if we let the released task V; inherit
the release time of its predecessor in the dataflow graph
(i.e., N;_1) and calculate its deadline by adding d; to this
logical release time, we get a deadline equal to the time that
Theorem 6.3 states the task will have finished executing.
Since the first node of a chain receives data from an exter-
nal device, it has no release time to inherit and its logical
release time is the same as its actual release time. Consider
the execution diagram of Figure 4. Zero Fill is first released
at time 0. The first actual release of Window Data occurs
after Zero Fill completes execution, at time ey, and its dead-
line is set to yo + e1. The logical release of Window Data,
however, occurs at time O since this is the release time in-
herited from Zero Data. (It is also the release time derived
under the strong synchrony hypothesis.) Using the logical
release time, we get a deadline of yq for Zero Data, which is
the time Theorem 6.3 gave as the upper bound for when the
task will finish execution if the task set is schedulable. Sim-



ilarly, we get a logical release time of 127y, and a deadline
of 191y, for the first execution of Azimuth IFFT.

As long as the scheduler ensures that a task only executes
when its input queue is over threshold, it does not matter if
N1 executes before ;. When the RBE task set is spec-
ified such that d; < d;;1, a release of N;; will never be
assigned a deadline earlier than a release of N;, even when
logical release times are used. Moreover, the latency bound
of Theorem 6.3 holds even when a release of N;;; exe-
cutes before a release of N;, which may occur when both
are assigned the same deadline. The EDF scheduling algo-
rithm does not specify how to break ties. Hence, a variant
of EDF may break ties based on topological sorting rather
than actual release times, which may result in V;1; execut-
ing before N; when d; = d;+1. Although latency is not
affected by the tie breaking algorithm, buffer bounds are.
We address this issue in §7.

6.3 Reducing Latency Further

If the latency bounds derived using d; = y; do not
meet the application’s latency requirements, we can eval-
uate the latency with smaller deadlines. As long as we keep
d; < di+1, Theorem 6.3 can be used to evaluate new la-
tency bounds. A simple technique to reduce the maximum
latency any signal will encounter (for a graph executingon a
uniprocessor) is to iteratively decrease the maximum dead-
line(s) to the maximum y; such that y; < max{d;} in the
graph. For example, after a positive result from (5.2) with
dyp = Yn, We would set d,, = y,,—1, asSUMINg y,—1 < Y,
otherwise we would setd,, 1 = d, = yn_2. When (5.2)
finally returns a negative result we have found a “breaking
point”. We can either use the deadlines from the previous
iteration or find the “breaking point” (for this technique),
which lies between the deadline values used in the last two
iterations.

7 Bounding Buffers

This sections gives bounds for the buffer requirements of
chains executed under the RBE model with release inheri-
tance, as described in the previous section. We use logical
release times rather than actual release times so that dead-
line ties are created during execution. These ties can then be
broken based on topology to reduce the buffer requirements
from what they would be if the ties were broken arbitrarily.

Since N,41 represents an external device and is not
scheduled, we cannot give an upper bound on @,,. One may
assume the device takes data as it is produced and bound the
buffer space for @), with p,,. Or assuming double buffering
techniques (common in /O interfaces), one might bound
the buffer space as 2p,,. In either case, the bound is plat-
form specific.

The most tokens @; can hold without being over thresh-

old is represented by r; where®

if 3k : T = k- gcd(pi,ci)
otherwise

7; — ged(pi, ¢;)
ry = ]
Z [WJ - ged(pi, ¢i)

After ); goes over threshold, the number of tokens that can
accumulate on the queue is a function of dataflow attributes,
deadlines, and the scheduling algorithm.

We have derived buffer bounds for preemptive EDF
scheduling and two variations of EDF: Breadth-First EDF
(BF-EDF) and Depth-First EDF (DF-EDF). The names for
these EDF variants becomes apparent when one looks at a
possible scheduling graph, which is used to break deadline
ties. A scheduling graph is a topologically sorted graph of
vertices representing releases of RBE tasks with the same
deadline. The graph is sorted with respect to the dataflow
graph and all jobs in the graph have the same deadline. Con-
sider the scheduling graph in Figure 5 — a possible snap-

Figure 5: A scheduling graph.

shot of the ready queue for the SAR graph after Pulse 128
has been processed by the Corner Turn node. The BF-EDF
scheduling algorithm performs a breadth-first search of el-
igible jobs, beginning at the left most side of each level.
Hence, the BF-EDF algorithm would select the Azimuth
FFT task followed by the left most release of Kernel Mult.
Using the labels a, b, ¢, d, and e to refer to the tasks releases
in Figure 5, BF-EDF would schedule them in order: a, b, c,
d, d', e and e* where d’ represents the new release of Ker-
nel Mult caused by the execution of Azimuth FFT and e*
represents the new releases of Azimuth IFFT, which result
from executions of Kernel Mult. The DF-EDF scheduling
algorithm performs a depth-first search of eligible jobs by
traversing down the left most side of the tree until it reaches
a leaf. In this case, DF-EDF would select the Azimuth IFFT
task to execute followed by the left most release of Kernel
Mult. A DF-EDF schedule, starting with the schedule graph

SWethank Sanjoy Baruah for the inspiration that led to the tight bound
represented by r;.



of Figure 5, would be e, b, €, c, €”, d, €', a where €', e",
and e’ are new releases of Azimuth IFFT caused by the
executions of Kernel Mult.

7.1 Buffer Boundswith BF-EDF

The BF-EDF scheduling algorithm is an EDF algo-
rithm in which deadline ties are broken by performing a
breadth-first search of the scheduling graph. Under BF-
EDF scheduling, the input queue to Azimuth IFFT would
accumulate data from 256 executions of Kernel Mult before
Azimuth IFFT would execute.

The function Bgr(Q;), which assumes release time in-
heritance, returns the maximum number of tokens the 4t"
queue will ever hold when the graph is scheduled with ei-
ther BF-EDF or the canonical EDF scheduling algorithm.

Bpr(Q;) =
'([z—o]-po)+ro ifi=0
(S
if(i >0 A diy1>di AN yo<diy1 <yi)
{ V (i>0Adig1>di N di <yi <dit1)

([%J T pi) + 1
If(Z >0 A di+1 >d; A Yy < d; <d,‘+1)
Bpr(Qi—1)—Ti—1 . ) i
L ([—J + 1) p; +r; otherwise

Ci—1

The last expression in Bpr(@Q;) handles the cases when
d; = d;+1 (which creates deadline ties) or d;11 < o
(which means N; through N;,; all complete their execu-
tions before the next produce by Ng) by working “back up
the chain”.

Since EDF does not specify how ties are broken, we
would need to sum Bgr(Q;) over all of the queues in the
chain to bound a graph’s simultaneous buffer requirements.
With BF-EDF, however, we know that, Vj > i > 1, any
release of N; will execute before a release of N; when
N; and N; both have the same deadline. When N; exe-
cutes, it reads data from @;_; and writes data to Q; —
using both queues simultaneously. By the time N;,; ex-
ecutes, however, @);_; will be under threshold and will hold
at most r;_; tokens. Much of the space that was used
by @;_1 when N; was executing can be reclaimed and
used by @;+1 to hold the data produced by N;;1. There-
fore the total buffer space required for ;—1 and Q;41 is
max(Ber(Qi—1)—ri—1, BBF(Qit1)—Tit1)+ric1+Tit1.
Theorem 7.1 divides the queues into two disjoint sets and
uses this technique to bound the total buffer space required
by the chain.

Theorem 7.1. For the BF-EDF scheduling algorithm with
release time inheritance and d;11 > d;, Vi : 0 < i < n,
the maximum buffer space required is < 3, where

n—1
B = Bpr(Qo) + Y _ri
i—1

+max{BBF(Qk)—rk|Vk=2i:i>0 N k<n}
+maX{BBF(Qk)—T'k|Vk‘:2i—12i>0 A k<n}

7.2 Buffer Boundswith DF-EDF

The DF-EDF scheduling algorithm is an EDF algorithm
in which deadline ties are broken by performing a depth-
first search of the scheduling graph. The DF-EDF sched-
ule, starting with the schedule graph of Figure 5, is e, b,
e, c, e’ d, e, aand the input queue to Azimuth IFFT
only accumulates data from one execution of Kernel Mult
before it executes. The function Bpr(Q;) returns the max-
imum number of tokens @; will ever hold when the graph is
scheduled with release inheritance and DF-EDF. For some
applications, breaking deadline ties with a depth-first search
of the scheduling graph rather than a breadth-first search re-
sults in a lower upper bound on buffer requirements for the
graph.

Bpr(Qi) =
(2] po) + 70
([d;%] “Ti - pi) + i
if(i >0 A diy1 >di N yo<dia <y,~)
V E>0Adigr>di N di <y <digq)
< ([d;%] T pi) T
ifi >0 A dip1>d; Ny <d; <diyr
(lBDF(Qi—l)*Ti—IJ + 1) - pi 47

Ci—1
ifi >0 A diz1>d; N yo>dita
\Pi +Ti otherwise

ifi=0

Theorem 7.2. For DF-EDF scheduling with release time
inheritance and d;41 > d;, Vi : 0 < 4 < n, the
maximum buffer space required is less than or equal to

S Bor(Q:).

7.3 Buffer Boundsfor the SAR graph

Table 1 shows the values returned from Bpr(Q;) and
Bpr(Q;) for each queue in the SAR graph with d; = y;.
These values were used to derive the maximum buffer space
required to execute the graph when release time inheritance
is used in conjunction with EDF, BF-EDF, and DF-EDF
scheduling: 148,086; 81,782; and 82,806 respectively.
Using d; = y; in the SAR graph, BF-EDF scheduling yields
the lowest memory bound. It remains an open questions as
to whether BF-EDF scheduling actually uses the least mem-
ory. We believe DF-EDF scheduling will actually use the
least memory for the SAR graph, but we do not yet have a
tight bound for DF-EDF scheduling of general chains.



Queue | Bpr(Q;) | Bor(Q:)
Range 118 118
Fill 256 256
Window 256 256
RFFT 256 256
RCS 48,896 48,896
Azimuth | 32,768 32,768
AFFT 32,768 128
Mult 32,768 128

Table 1: Maximum buffer space required per queue evalu-
ated with Bpr (Qz) and Bpr (Q,)

8 Summary

In most “real-time” dataflow methodologies, system en-
gineers are unable to analyze the real-time properties of
dataflow graphs like those created using PGM. We have
shown that this is not an intrinsic property of the method-
ologies, and that by applying scheduling theory to a PGM
graph, we can determine exact node execution rates, which
are dictated by the input data rate and the dataflow attributes
of the graph. We have also shown how to bound latency
and buffer requirements for an implementation of the graph
scheduled with the preemptive EDF algorithm (and varia-
tions thereof) under the RBE task model.

Given a graph, the only free parameters we have to affect
the latency or buffer bounds of the application are dead-
lines. If the latency requirement of the application is less
than the latency value from the strong synchrony hypothesis
(i.e., (F(No, N,) — 1) - yo), then the given graph will never
meet its latency requirement. If the latency requirement
is greater than the strong synchrony hypothesis bound but
less than the lower bound (F(No, Ny) — 1) -yo + Y1, €5,
changing deadlines will not help the graph meet its latency
requirement; a faster CPU is required.

If the latency requirement is greater than this lower
bound but less than the upper bound (F(Ng, N,,) — 1) -
Yo +d,, (Whered; < d;;11,1 <14 < n)then one can attempt
to follow the procedures outlined in §6.3 to reduce latency
to the desired bound. Should this technique fail, the system
engineer may need to make cost trade-offs. For example,
if the deadline assignment technique outlined in §6.3 failed
to yield satisfactory latency bounds before the schedulabil-
ity test returned a negative result, the system engineer can
decide whether to use a faster processor, or add memory to
increase buffering. It is clear that the first choice resolves
the latency problem, assuming a fast enough CPU exists.
It may not be clear, however, that adding memory can re-
duce latency. Suppose the deadlines have been reduced
such that the first k£ nodes in the chain all have deadlines
equal to their rate interval (i.e., d; = y;,Vi : 1 < i < k)
and the last (n — k) nodes have deadline values of dj, but
the latency bound is still too high and lowering the dead-

line parameters for the last (n — k) nodes yields a negative
result from (5.2). We may be able to reduce the latency
bound further by setting all of the deadline parameters to
LatencyRequirement — (F'(No, Ny,) — 1) - yo. This in-
creases the buffer requirements of the first & nodes, but may
produce enough slack in the schedule such that the graph is
now schedulable even though the deadline parameters of the
last (n — k) nodes have been reduced to achieve the desired
latency bound. Should the graph become schedulable with
these new deadline parameters but require too much mem-
ory, the system engineer can make cost trade-offs: more
memory, faster CPU, or relaxed requirements.

Since our driving application has the topology of a chain,
for space consideration we have restricted our analysis to
chains and note that the results presented in this paper can
be extended to general PGM graphs.
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