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Abstract 
We are developing an advanced Geospatial Decision Support System (GDSS) to improve the 

quality and accessibility of drought related data for drought risk management.  This is part of a Digital 
Government project aimed at developing and integrating new information technologies for improved 
government services in the USDA Risk Management Agency (RMA) and the Natural Resources 
Conservation Service (NRCS).  Our overall goal is to substantially improve RMA's delivery of risk 
management services in the near-term and provide a foundation and directions for the future.   

We integrate spatio-temporal knowledge discovery techniques into our GDSS using a combination of 
data mining techniques applied to rich, geospatial, time-series data.  Our data mining objectives are to: 
1) find relationships between user-specified target episodes and other climatic events and 2) predict the 
target episodes.  Understanding relationships between changes in soil moisture regimes and global 
climatic events such as El Niño could provide a reasonable drought mitigation strategy for farmers to 
adjust planting dates, hybrid selection, plant populations, tillage practices or crop rotations.   

This work highlights the innovative data mining approaches integral to our project's success and 
provides preliminary results that indicate our system’s potential to substantially improve RMA's delivery 
of drought risk management services. 

1. Introduction 
This work is part of an NSF-funded Digital Government project1 aimed at developing and integrating 

new information technologies for improved government services in the USDA Risk Management 
Agency (RMA) and the Natural Resources Conservation Service (NRCS).  The mission of the USDA 
is to enhance the quality of life of U.S. citizens by supporting farming and agriculture and by expanding 
global markets for agricultural products (USDA Strategic Plan 1997).  USDA's vision is to help citizens 

                                                           
1 This project is a multi-disciplinary collaboration between researchers at University of Nebraska - Lincoln and 

the USDA, with cooperation from the US Geological Survey (USGS) Earth Resources Observation Systems (EROS) 
Data Center and the Center for Rural Affairs at Walthill, NE.  The University of Nebraska - Lincoln research team 
members are affiliated with the Computer Science and Engineering (CSCE) Department, the National Drought 
Mitigation Center (NDMC) and the High Plains Regional Climate Center (HPRCC).   
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Figure 1. The relationship of corn yield in Nebraska to ENSO signatures through time. 

live in harmony with the land while enjoying healthy and prosperous lives.  The RMA, an important arm 
of USDA, "is responsible for helping keep America's farmers and ranchers in business as they face the 
uncertainties of weather and markets" (USDA Strategic Plan 1997).  The mission of the RMA is to 
strengthen the safety net for agricultural producers (farmers) through sound risk management programs 
and education.  RMA's mission requires understanding risks across the agricultural landscape, and 
communicating these risks with agriculture producers, the private sector crop insurance industry, and 
other government agencies.  The problems in processing available data, developing information 
resources, and communicating with decision-makers are complex and difficult.  Data comes from many 
sources, including other USDA agencies, the private sector crop insurance industry, and the US 
Geological Survey, with attendant problems in retrieval, reformatting, integration, and the creation and 
handling of meta-data.  Developing information for risk management involves discovery of patterns in 
various types of crop and environmental data, modeling, and geospatial analyses.  Finally, information 
involving complex concepts and relationships must be communicated to farmers and other decision-
makers so that they can manage and mitigate risk.  

We are developing an advanced Geospatial Decision Support System (GDSS) to support faster and 
better drought risk management.  Our overall goal is to substantially improve RMA's delivery of drought 
risk management services in the near-term and provide a foundation and directions for the future.  
Helping RMA become a model "digital government" agency will directly assist those in agriculture and 
will have important economic and societal benefits. 

Nationally, drought events are the dominant (47%) cause of crop loss, followed by excess moisture 
(22%) and cold or frost conditions (13%) (USDA RMA 1998).  The Federal Emergency Management 
Agency (FEMA) reported the average annual cost of drought as $6-8 billion and the National Climatic 
Data Center (NCDC; Asheville, NC) reported the estimated cost of the 1988 drought alone was $40 
billion.  "Concerning drought impacts in the state of Nebraska, during the ten-year 1989-1998 period, the 
indemnity paid for drought losses in Nebraska totaled more than $92 million, or approximately $9 million 
per year (USDA RMA 1999)." 

Crop productivity and risk are products of the environment and the grower's management practices.  
Crop yields can serve as integrated reflections or indicators of El Nino/La Nina signatures, as shown in 
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Figure 1.  The vulnerability of croplands to drought events is strongly influenced by crop selection or 
rotation, time of planting, genetics of the crop, tillage and fertility management, diseases, insects, and the 
quality of underlying soils.  Risks can be mitigated and losses reduced with improved knowledge 
development and dissemination.  Automation and knowledge discovery in decision support systems is 
key to the future success of RMA and its responsiveness to the nation's farmers.  The successful 
completion of this project will help RMA integrate advanced geospatial applications into their operations, 
and result in a government agency that is much more efficient and responsive to drought risk 
management. 

Figure 2. A geospatial decision support system for drought risk management. 

One of our project's performance objectives is to report associations between weather station data, 
crop yields, and sea surface thermal properties. To meet this performance objective, we integrate spatio-
temporal knowledge discovery techniques into our GDSS using a combination of data mining techniques 
applied to rich, geospatial, time-series data.  Our data mining objectives are to:  1) find relationships 
between user-specified target episodes and climatic events and 2) predict the target episodes.  
Understanding relationships between changes in soil moisture regimes and global climatic events such as 
El Niño could provide a reasonable drought mitigation strategy for farmers to adjust planting dates, 
hybrid selection, plant populations, tillage practices, or crop rotations.  This work highlights the 
innovative data mining approaches integral to our project's success and provides preliminary results that 
indicate the potential our system has to substantially improve RMA's delivery of drought risk 
management services. 

2. A Geospatial DSS for Drought Risk Management 
The project entails making improvements and innovations in RMA's government services by developing 
an advanced GDSS for drought risk management.  The data layer, information layer, and knowledge layer 
and example inputs and outputs of the GDSS are illustrated in Figure 2.  The network-clustered server 
environment allows for distributed and parallel computing that will be necessary in our advanced 
geospatial applications. 

The data layer builds on the UNL MLPQ/GIS (Kanjamala 1998) system.  Its roles are ingesting data 
and providing access to data that are fundamentally important.  This layer will:  

• Import and translate data relevant to drought risk management into constraint database representations. 



• Query the constraint database systems for analysis and forecasting of drought. 

Figure 3. The information layer of a GDSS for drought risk management. 

• Display and animate drought episodes. 

The information layer uses Targeted Episode Association, Learning and Prediction for data 
mining and information retrieval.  This layer integrates data into information products for manipulation in 
knowledge development.  This layer will: 

• Use the MLPQ/GIS system for data mining and information retrieval. 
• Use data mining methodologies for associating episodes to targeted episodes. 
• Use data mining methodologies for learning predictive algorithms for targeted episodes. 

The knowledge layer builds on the information layer to provide Drought Risk Decision Support.  
This layer will: 

• Use data mining and information retrieval tools to explore models for drought conditions, risk 
assessment, and prediction. 

• Model the relationships of additional input variables with drought events and episodes. 
• Generate dynamic vulnerability maps, drought forecasts, and economic and environmental impact 

assessments using decision support tools. 

3. Targeted Episode Association, Learning, and Prediction 
As a critical part of the proposed GDSS, the information layer incorporates several sequential data 

mining techniques shown in Figure 3. (See Harms 2001 for the detailed system.)  Our overall goal is to 
find relationships with droughts and other climatic episodes and with agricultural outcomes, such as crop 
yield.  The proposed techniques are intended as exploratory methods.  Thus, iterative and interactive 
application of the approach coupled with human interpretation of the rules is likely to lead to the most 
useful results, rather than a fully automated approach (Das 1998).  The basic idea is to: 



1. Convert time series into discrete representations, using clustering (Das 1998), normalization 
(Goldin 1995), and transformations.  Each data set will need its own discretization process, and 
thus this step relies on human (domain-expert) involvement.   

2. Set the user specified target episodes as constraints (Srikant 1997) and set other system 
parameters as specified by the user, such as sliding window width, the minimum frequency and 
the minimum confidence value. 

3. Record frequent episodes (Mannila 1995, Klemettine 1999) that meet the targeted episode 
constraints using closure techniques (Pasquier 1999, Saquer 2000) to increase the probability that 
the discovered episode is important. 

4. Discover representative episodal association rules relating the frequent episodes using association 
rule techniques (Agrawal 1993), representative association rule techniques (Kryszkiewicz 1998a, 
Kryszkiewicz 1998b), and sequential association rule techniques (Das 1998).   

5. Use highly significant rules where the consequent is restricted to the target episodes, to learn the 
target episodes using classification and rule mining prediction techniques (Liu 1998). 

6. Validate the learning algorithm by predicting (new) test data. 
 

We first discretize the data sets into sequences of events, using the same time measure for all data 
sets.  We look for events that occur together in a relatively short time interval, called the sliding window 
width. A pattern of events that occurs within the sliding window width is called an episode.  An episode 
may be repeated in several windows through time.  The frequency of an episode is the number of 
windows in which the episode occurs.  The domain-expert sets the minimum frequency value to the 
minimum number of windows in which episodes must occur to be of interest.  This constrains the set of 
target episodes to the episodes that occur frequently in time.   

After we have found the frequent episodes, we look for association rule patterns within each episode.  
An episodal association rule r is a rule of the form X => Y where both X and Y are nonempty subsets of 
events, and X ∩Y = ∅ . We consider how often the episode occurs relative to how often a given subset of 
events occurs.  For each episode Z, we look at each subset of events X, and let Y = Z\X. The events in X 
make up the antecedent of the rule r, and Y its consequent.  The frequency of the episode Z divided by the 
frequency of the subset X is the confidence of the association rule X => Y.   This gives the proportion of 
the time that all the events in Z occur given that the events in X occur. The coverage of a rule is the 
frequency of the subset X.  The number of potential rules grows quickly with the number of events in the 
antecedent (Das 1998).  We reduce this number while still maintaining rules of interest to the domain-
expert, by:  1) considering only the association rules that meet the minimum confidence value, and 2) 
using representative episodal association rules to find the minimal set of rules that cover the entire set of 
frequent episodes.  The representative association rules are the minimal set of association rule that can be 
generated from a given data set for the minimum frequency and confidence parameters (Kryszkiewicz 
1998a).  From this set, the entire set of association can be generated, so the user can mine around the set 
of rules. We then pick the set of association rules that are predictive of the target episodes, and validate 
the results on new data.   

4. Preliminary Results for the Nebraska South Central Research & Extension 
Center  
We have used this approach to find relationships between drought episodes at the South Central 

Research & Extension Center (SCREC) at Clay Center, NE, and other climatic episodes, from 1989-1999.  
There is a network of agricultural research stations in Nebraska with automated weather stations that can 
serve as long-term reference sites to search for key patterns and link to climatic events.  We use data from 
a variety of sources: 

 



• Satellite vegetation data from USGS's EROS Data Center (US National Oceanic and Atmospheric 
Administration (NOAA) Advanced Very High Resolution Radiometer AVHRR biweekly data 
set, 1989-1999) 

• Standardized Precipitation Index (SPI) data from NDMC 
• Precipitation and soil moisture data such as daily rainfall amount and the Crop Moisture Index 

(CMI) from HPRCC 
• North Atlantic Oscillation Index (NAO) from Climatic Research Unit, University of East Anglia, 

UK2 
• Pacific Ocean Southern Oscillation Index (SOI) (Climate Prediction Center, NOAA)3 

The data for the satellite and climatic indices are grouped into seven categories, i.e. extremely dry, 
severely dry, moderately dry, near normal, moderately wet, severely wet, and extremely wet.  In this 
preliminary study, the vegetation conditions are assessed using the Standardized Vegetation Index (SVI) 
based on the NOAA AVHRR satellite data.  The SOI and NAO categories are based on the standard 
deviation from the normal and the negative values are considered to show the dry periods.  The one 
month SPI values also are grouped into the same seven categories to show the precipitation intensity 
relative to normal precipitation for a given location and a given month. 

After normalizing and discretizing each data set using the seven categories above, we specified droughts 
(the three dry categories) as our target episodes and used a sliding window of 3 months.  Using these 
parameters, we looked for the drought episodes that occurred at least 10% of the time, since droughts are 
infrequent in nature.  From the frequent drought episodes we found several representative association rules, 
which occur with at least 70% confidence including those shown in Table 1, explained below. 

Table 1. Sample rules discovered for Nebraska South Central Research & Extension Center 

Rule Number Rule (X ==> Y) Confidence 
(X∪ Y)/X 

Frequency 
|X∪ Y| 

Coverage 
|X| 

1 29, 3, 31 ==> 59 0.86 12 14 
2 29, 38 ==> 59 0.72 13 18 
3 24, 3 ==> 59 0.80 12 15 

1. If the SOI is moderately dry to extremely dry, then the SVI (vegetation) with one-month lag was 
found to be under moderately dry conditions, with 86% confidence. 

2. If the SOI is extremely dry and NAO is moderately dry, then the SVI (vegetation) with one-
month lag was found to be under moderately dry conditions, with 72% confidence. 

3. If the one-month SPI is moderately dry and the SVI (actual vegetation) is under moderately dry 
conditions, then the SVI (vegetation) with one-month lag was found to be under moderately dry 
conditions, with 80% confidence. 

The preliminary results show that the episodes of below normal Southern Oscillation Index values in 
the Pacific Ocean (El Niño signatures) and below normal North Atlantic Index values were associated 
with occurrences of dry vegetation conditions after one month at the SCREC weather station in Clay 
Center, NE.  These rules indicate that the knowledge discovery decision support system will help to 
assess the local and global climatic conditions and identify the local drought conditions ahead of time.  
The third rule validates common sense, and basically states that if it is dry now, and if it does not rain, 
then in one month it will also be dry.  Although this knowledge is intuitive, a knowledge discovery 

                                                           
2 Available from: http://www.cru.uea.ac.uk/cru/data/nao.htm 
3 Available from: http://www.cpc.noaa.gov/data/indices/index.html 
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decision support system must be able to validate common knowledge, in addition to discovering the truly 
interesting patterns. 

5. Conclusions & Future Work 
By allowing the user to explore iteratively and interactively, our GDSS gives the user firm control on 

the knowledge discovered.  We use a data-driven approach; using current and new data mining techniques 
to discovery association rules for target drought episodes.  Our system will discover relationships in 
various types of crop and environmental data.  It will then go a step further to learn and predict the target 
episodes.  We plan to expand our information layer to support decisions about the spatial extent of 
drought and to discover time-delayed relationships in the data sets.   

Risks can be mitigated and losses reduced with improved knowledge development and dissemination.  
Our system provides the automation and knowledge discovery in decision support systems that is key to 
the future success of RMA and its responsiveness to the nation's farmers.  The successful completion of 
this project will help RMA integrate advanced geospatial applications into their operations, and result in a 
government agency that is much more efficient and responsive.  RMA will have improved effectiveness 
and greater impact in communicating about drought risk management. 
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