
Capturing an Application’s Temporal Properties
with UML for Real-Time

Weiguo He           Steve Goddard
Computer Science & Engineering
University of Nebraska - Lincoln

Lincoln, NE 68588-0115
{whe, goddard}@cse.unl.edu

Abstract
The Unified Modeling Language (UML) is

commonly used in the development of non-real-time
systems and is gaining popularity in the object-oriented
real-time community as well. Recently, Rational
Software Corporation teamed with ObjecTime, Ltd to
develop UML for Real-Time (UML-RT).  UML-RT uses
the extensibility mechanisms of UML to incorporate
concepts from ROOM (Real-time Object-Oriented
Modeling language) and Role modeling from
ObjecTime. We present a novel method for capturing
the temporal parameters of a real-time application in a
UML-RT model so that schedulability analysis can be
performed.

1. Introduction
Real-time software systems are widely applied in

domains such as telecommunications, aerospace,
defense, and automatic control applications. High
assurance systems engineering of these systems is
critical since even a small malfunction has serious
consequences. Thus, methods for developing and
modeling real-time systems and rigorously verifying
behavior before committing to code are of great interest
to many researchers [13].

The Unified Modeling Language (UML) is
commonly used in the development of non-real-time
systems and is gaining popularity in the object-oriented
real-time community as well [20].  Recently, Rational
Software Corporation teamed with ObjecTime, Ltd to
develop UML for Real-Time (UML-RT) [12].  UML-
RT uses the extensibility mechanisms of UML to
incorporate concepts from ROOM (Real-time Object-
Oriented Modeling language) and Role modeling from
ObjecTime [21]. It can be used to help capture and
understand the structural and behavioral patterns on
which all other aspects of the system depend.
Moreover, UML-RT is extremely useful in modeling
the reactive nature of many real-time systems.

Two temporal parameters, release times and
deadlines, often distinguish real-time systems from
non-real-time systems. In general, a constraint imposed
on the timing behavior of a job is called a timing

constraint. If the validation that a real-time system
always meets the timing constraint is required, we call
this system a hard real-time system. Validation has
normally meant a demonstration by a provably correct,
efficient procedure or by exhaustive simulation and
testing. Because of the criticality of real-time systems,
efficient validation algorithms and methods as well as
scheduling and resource management strategies are
generally regarded as essential content in this area [11].

As a successful tool, UML-RT provides a model to
analyze complex, event-driven, real-time systems by
mirroring the way real-time systems actually work, and
ultimately helps construct and generate code for
complete, mission critical real-time applications.
However, it fails to extract, represent, and analyze
temporal parameters, which are the essential attributes
of real-time systems. Therefore, it is difficult to validate
a system in the early design and development stages for
temporal correctness, even though UML models
support the validation of functional or behavioral
requirements.

We present a novel method for capturing the
temporal parameters in an UML-RT model so that
schedulability analysis can be performed.  Our method
uses the extensibility mechanisms of UML.
Schedulability analysis of object-oriented systems is
itself a complicated topic beyond the scope of this
paper.  However, we note that once the temporal
parameters of the real-time application have been
identified using our method, the schedulability analysis
work of Saksena and his co-authors can be applied for
fixed priority scheduling algorithms [15, 16, 17].
(Their work is briefly compared with ours in section 4.)
To the best of our knowledge, schedulability analysis
for real-time applications with an object-oriented design
and executed with a deadline-driven scheduling
algorithm remains an open problem.

The rest of this paper is organized as follows.
Section 2 provides an introduction to UML-RT.  The
method for capturing the temporal properties of the
real-time application within the UML-RT model is
presented in Section 3. Discussion of related work is
deferred to Section 4 (after our method has been
presented). Our conclusions are presented in Section 5.



2. UML for Real-Time
We assume the reader has a basic understanding of

UML and object-oriented design and development
methodologies, but not of UML-RT.  Thus, background
material on UML-RT is presented to assist the reader in
understanding our method for extracting the temporal
properties of a real-time application and specifying
them as temporal parameters in a UML-RT model.  We
begin with a brief overview of ROOM and UML for
completeness.

ROOM is a modeling language with formal
semantics for the purposes of specifying, visualizing,
documenting, and automating the construction of real-
time systems. ROOM use role-modeling concepts,
which capture the structural communication patterns
between software components, to support architectural
design patterns. ROOM models are composed of actors
that communicate with each other by sending messages
along protocols. Actors may be hierarchically
decomposed, and have behaviors described by ROOM
charts. Descriptions of actors, protocols, and behaviors
can all be reused through inheritance.

UML is a general-purpose language for visualizing,
specifying, constructing, and documenting the artifacts
of a software system. The vocabulary of UML
encompasses three kinds of building blocks: things,
relationships, and diagrams [2]. UML is open-ended,
and provides extensibility mechanisms to allow users to
extend the language in controlled ways. The
mechanisms include stereotypes, tagged values, and
constraints. With UML, a software system’s use case
view, design view, process view, implementation view,
deployment view and their interactions can be
expressed to capture the architecture of the system.

UML-RT is a combination of concepts in
ROOM and UML. It includes constructs for modeling
both the structure and behavior of a real-time system
[22, 23].  The rest of this section presents these
constructs, and uses diagrams from [22].

2.1. Structure Modeling in UML-RT
The three principal constructs for modeling structure
are capsules, ports, and connectors.

Capsules are the fundamental elements in UML-
RT modeling. They are a specialization of classes that
have the same properties as classes. As such, capsules
are a grouping of objects, based on common
characteristics.  Capsules are distinguished from
ordinary classes by their communication mechanisms.
Each capsule has at least one port through which it
communicates with other objects, and ports are the only
means of interaction with the external world for
capsules. A capsule may contain collaborating sub-
capsules, as shown in Figure 1.  A capsule may have at
most one state machine that is in charge of sending and
receiving signals through ports, and controlling certain
constructs of the internal structure. A state machine
depicts the behavioral characters of capsules and is
described in Section 2.2. Normally, ports, connectors,
and sub-capsule are created and destroyed at the same
time as the containing capsule. However, some sub-
capsules can be created and destroyed dynamically by
the state machine of the capsule. A capsule may also
contain plug-in roles, which are actually placeholders
for sub-capsules that are filled in dynamically.

Ports are objects that act as interfaces on the
boundary of a capsule.  (Thus, ports are objects within a
capsule.) There are two kinds of ports: relay ports and
end ports. Relay ports are connected to sub-capsules to
simply pass all signals through, while end ports are
connected to the capsules’ state machine as the ultimate
sources and destinations of signals sent by capsules.
Each port of a capsule plays a particular role in the
collaboration between the capsule and its interacting
object. To define the legal flow of signals between two
interacted capsules, the concept of a protocol is
introduced. (Protocols are described in Section 2.2.)
Normally every port is associated with a protocol in a
connection. In UML-RT, ports can be illustrated in
different ways depending on the purpose of a diagram,
as shown in Figures 2, 3, and 4.

b:CapsuleClassB
{plugin}

5
c:CapsuleClassC

CapsuleClassA

Figure 1: Collaboration diagram (internal view of a capsule).



Connectors are actually information channels that
support the defined signal-based protocols in a model.
A connector can only connect ports that play
complementary roles in the protocol associated with the
connector. The difference between a connector and a
protocol is that a protocol is an abstract specification of
desired behaviors while a connector is a physical object
that transmits signals between ports. In UML, a
connector is represented as an association (as shown in
Figures 1 and 4). The relationship between a connector
and its associated protocol is implicit through the
connected ports.

2.2. Behavior Modeling in UML-RT
The three basic constructs for modeling behavior of a
system are protocols, state machines, and time service.

Protocols define a contractual agreement between
the communicating participants. They are usually
associated with connectors and leave the roles defined
by them to be realized by ports. In the specification of a
protocol, incoming and outgoing signal sets are
normally listed to describe behavior that occurs across a
connector.  See Figure 5.

As a specialization, binary protocols involve just
two participants. The roles played by different
participating ports under this protocol are called base
role and conjugate role respectively. Only the base role
is specified in the protocol, whereas the conjugate role

is derived by directly inverting the incoming and
outgoing signal sets.

A state machine is a behavior that specifies the
sequences of states an object goes through during its
lifetime in response to events, together with its
responses to those events. It is a means of modeling the
dynamic aspects of a system. State machines are mostly
concerned with the flow of control from activity to
activity, and the states of the objects and the transitions
among those states (a simple state machine is shown in
Figure 6).

Time service provides a facility to transfer timing
requirements from capsules, or state machines into
signal-based events to trigger certain actions. Time
service can be accessed through standard ports called
service access points. The protocol associated is called
TimeServiceSAP (a system-defined protocol role).
When a task needs to initiate a time-related activity, it
asks the time service to send a special timeout message
at the desired time instant. The facility to help realize
this service is timer, which includes both one shot and
periodic timers. For example, the RTTimespec class is
used to hold relative times. To ask the time service to
send out a timeout message every 10 seconds, we can
set up a periodic timer with the following function call:
timer.informEvery( RTTimespec(10, 0)).

<<capsule>>
CapsuleClassA

<<port>>
PortClassX

<<protocolRole>>
master

<<protocol>>
ProtocolA

b

1

Figure 2: An example of a single port named b belonging to capsule class CapsuleClassA.
The port realizes the master role of the protocol defined by protocol class ProtocolA.

<<capsule>>
CapsuleClassA

ports
+b:ProtocolA::master
+b1[3]:ProtocolB
#b2:ProtocolB~

Figure 3: Port notation-class
diagram.

<<capsule>>
a:CapsA

<<capsule>>
b:CapsB

p:ProtQ

s:ProtQ~

Figure 4: Port notation – collaboration diagram.
Black-filled squares represent ports with base roles.
White-filled squares represent ports with conjugate roles.



3.  Capturing Temporal Properties in
UML-RT

Our long-term goal is to automate the evaluation of
the temporal correctness of real-time applications
developed using UML-RT.  Evaluating the temporal
correctness of an application is called schedulability
analysis in the real-time literature.  The traditional
methods of schedulability analysis identify tasks in the
system whose jobs are executed with a regular pattern.
Task attributes—such as the execution pattern (rate-
based, periodic, sporadic, or aperiodic), start time,
maximum execution time, response time bound, and
precedence constraints—are then defined and a
schedulability condition is evaluated.  A positive result
from the schedulability condition implies temporal
correctness (i.e., all response time bounds will be met).

While some work has been done on determining
the schedulability of object-oriented real-time systems
(e.g., [1, 4, 5, 10, 15, 16, and 17]), to the best of our
knowledge, only Saksena and his co-authors [15, 16,
17] have developed a systematic approach for capturing
the temporal attributes of an application from the UML-
RT model.  Their method uses an extended sequence
diagram to identify the tasks that are executed as a
result of an external event. Our method differs
primarily in that we use the protocol signals associated
with each port of a capsule to identify the initial task
set.  This approach recognizes that all work performed
in a reactive system is done so in response to an event
(which is triggered by a signal in UML-RT). Our
method has three steps: (1) create the initial real-time
task set from the actions performed in response to
events handled by objects in the system; (2) refine the
task set by identifying precedence constraints in the
causal set of actions using a sequence diagram; and (3)
represent the resulting real-time task set and associated
temporal attributes using the extensibility mechanism of
UML.

3.1. Creating the Initial Task Set
Active objects of a real-time system execute in

response to events generated by other objects (in
capsules), the expiration of timers, or the external
environment. These events are called triggering events.
A sequence of jobs executed in response to a recurring
(triggering) event constitutes a task in real-time
scheduling theory.  Therefore, the task set is created by
identifying all active objects and the work performed in
response to triggering events. All such events are
represented by one of the following three types of
signals in a UML-RT model.

The first type is the signal defined in protocols
that are realized by ports via connectors between
different capsules. The majority of signals in a UML-
RT model belong to this category. The second type is
the signal transmitted between the time service and
capsules. When a capsule needs to initiate a timer in
time service, it sends a signal to timer service for the
application. Upon the expiration of the timer, a signal is
sent back from time service to the capsule to trigger an
event. The protocol applied for this purpose is system
pre-defined Timing protocol. The third type of signals
is found between capsules and their environment,
including the system itself and user operations. In
UML-RT, events generated by the external
environment (including human interaction) are
represented using the actor communicates-association
scheme of ROOM. Under this scheme, use cases and
actors interact by sending signals to one another. There
can be only one communicates-association between a
use case and an actor. The complete network of such
associations constructs a picture of the communication
between the system and its environment.

Thus, we build our initial task set by associating a
task with the actions performed by active objects in
response to every signal in a UML-RT model. A task’s
execution pattern (e.g., rate-based, periodic, sporadic,
or aperiodic) and frequency is determined by the signal

<<protocol>>
BinaryProtocolA

incoming
signal1
signal2
signal3

outgoing
signal1
signal5
signal6

Figure 5: Class diagram - protocol. Figure 6: A simple state machine.



triggering the task (active object). If a signal is defined
in a binary protocol, it represents one task. Otherwise, if
a signal is defined in a multiple protocol, the number of
capsules interacting via the signal determines the
number of tasks required to model the object’s
execution behavior. The multiple tasks derived from the
same signal are unique from a scheduling theory
perspective since they have different temporal
attributes. The temporal parameters of tasks are
specified as attributes of the triggering signal by
extending UML-RT slightly (as described in Section
3.3).

Example.  We illustrate our method of identifying
real-time tasks using a small part of a simple real-time
AlarmClock application, which was presented and
modeled in the Rational Rose RealTime 6.0 tutorial
[14]. We have used some of the diagrams, including
protocols, provided in the software and the tutorial, and
modified them as needed for our presentation.  In the
AlarmClock system, the basic components are the
alarm controller, clock controller, time tick hardware,
and GUI. The GUI includes a GUI proxy, smart
buttons, and a button controller. All of these
components are abstracted as capsules in the model.
Protocols are defined to describe the messages
exchanged between different objects. Moreover,
necessary state diagrams, collaboration diagrams, and
structure diagrams are drawn to deeply analyze the
system.

For the purpose of simplifying the presentation, we
focus on only a part of the system. Without losing
generality, the sub-system we analyze is the clock

control system, which interacts with most of the other
components. To make the implementation as simple as
possible, we have limited the number of capsules in the
model. So signals sent to the GUI proxy and smart
buttons are both treated as passing to AlarmClockGUI
without differentiation. The structure diagram of the
system is shown in Figure 7.

The central component in this sub-system is the
ClockController capsule, which encapsulates the
current time, and responds to time setting button events
originating from the GUI. As shown in Figure 7, it
accepts signals from capsule TimeTickHardware via
port tick to set time and sends signals to capsule
AlarmClockGui via port clockIf to force the GUI to
visually show time. There are several protocols that
define the incoming and outgoing signals transmitted
between these capsules, time service, and the
environment, to fulfill the functionality, as shown in
Figure 8.

The TimeTickInterface protocol connects the
TimeTickHardware capsule with other capsules that
need to know about the passage of time. The
ClockInterface protocol includes messages exchanged
between the AlarmClockGui and the ClockController.
The Timing protocol allows capsules to communicate
with time service. The GUIComm protocol includes
messages exchanged between the Real-Time
AlarmClock model and the external world.

In the clock control sub-system, there are two
categories of functionality: showing clock time and
setting clock time. From the protocols shown in
Figure 8, a task set of 8 tasks can be obtained. Figure
9 graphically depicts the resulting task set.

Figure 8: Protocols used in the clock control sub-system.

<<protocol>>
Timing

timeout

<<protocol>>
GUIComm

powerOn
setSetTimeOn
setSetTimeOff

<<protocol>>
TimeTickInterface

setRelativeTime

<<protocol>>
ClockInterface

setAbsoluteTime

showTime
forceShowTime

Figure 7: Structure Diagram – AlarmClockDesign.

���FORFN&RQWUROOHU

���&ORFN&RQWUROOHU
���WLPH7LFN+Z

���7LPH7LFN+DUGZDUH

���DODUP&RQWUROOHU

���$ODUP&RQWUROOHU

���DODUP&ORFN*XL
���$ODUP&ORFN*XL

����FORFN,I

����WLFNa

����WLFN

����DODUP,I

����FORFN,Ia

����DODUP,Ia

���FORFN&RQWUROOHU

���&ORFN&RQWUROOHU

����FORFN,I

����WLFNa ���WLPH7LFN+Z
���7LPH7LFN+DUGZDUH����WLFN

���DODUP&RQWUROOHU

���$ODUP&RQWUROOHU

����DODUP,I

���DODUP&ORFN*XL
���$ODUP&ORFN*XL

����FORFN,Ia

����DODUP,Ia



3.2. Refining the Task Set with Precedence
Constraints

In real-time systems, tasks are not always
independent and may be restricted to execute in some
order. This is especially true when considering a chain
of tasks connected by connectors. We call the tasks
related to the same signal base task and conjugate task
respectively, in accordance with the concepts of base
role and conjugate role in UML-RT. A conjugate task
should not be executed until the arrival of a signal
generated by its base task. Therefore, precedence
constraints exist between two such tasks. Accordingly,
these constraints should be taken into account during
schedulability analysis.

A sequence diagram shows an interaction in a
system [2]. It depicts the set of objects in the interaction
and their relationships, including the messages that may
be transmitted between them. It emphasizes the time
ordering of messages, from which precedence

constraints between events are implied. We adopt this
approach to graphically show the existence of
precedence constraints in the task set.  (We note that
Saksena an his co-authors also used sequence diagrams
to create the task set and to identify precedence
constraints [15, 16, 17].  Our use differs in that we use
them to refine the existing task set, not to create it.)

In Figure 10, we present the sequence diagrams for
showing clock time and setting clock time respectively.
Four tasks are required to show clock time correctly.
The first task T1 (Apply Timer) is associated with
capsule TimeTickHardware and is triggered by signal
powerOn. It is a sporadic task that sets a periodic timer
to count ticks. The second task T2 (Ticking) is triggered
by a signal timeout in capsule TimeTickHardware. It
is a periodic task that records the passage of a tick. The
third task T3 (Tick Accumulation) in ClockController,
is triggered by the periodic signal setRelativeTime
generated by task T2. It keeps track of the passage of
ticks and notifies AlarmClockGUI to update time once
a second. In capsule AlarmClockGui, task T4

<<protocol>>
Timing

<<task>>
Task3

{signal = Timing.timeout}

<<protocol>>
GUIComm

<<task>>
Task1

{signal = GUIComm.powerOn}

<<task>>
Task5

{signal = GUIComm.setSetTimeOn}

<<task>>
Task8

{signal = GUIComm.setSetTimeOff}

<<protocol>>
ClockInterface

<<task>>
Task4

{signal = ClockInterface.forceShowTime}

<<task>>
Task7

{signal = ClockInterface.showTime}

<<task>>
Task6

{signal = ClockInterface.setAbsoluteTime}

<<protocol>>
TimeTickInterface

<<task>>
Task2

{signal = TimeTickInterface.setRelativeTime}

Figure 9: Generation of a task set based on signals defined in protocols.



(Display/Update Time) updates the display of time
periodically upon the arrival of signal forceShowTime
from task T3. These four tasks are all released at the
moment when the overall system is initiated (power on)
with the described precedence constraints. (Periodic
tasks are contained within the dotted rectangle.  Tasks
outside the dotted rectangle are sporadic.)  The other
functionality–setting clock time–requires four sporadic
tasks. Task T5 (Enter Setting Clock) performs the
steps required to enter the setting-clock-time mode.
Task T6 (Set Clock) sets desired time. Task T7

(Display/Update Time) updates the display of time set
by task T6. Task T8 (Exit Setting Clock) performs the
steps required to exit the setting-clock-time mode.
These tasks are associated with signals setSetTimeOn,
setAbsoluteTime, showTime, and setSetTimeOff
respectively.

Thus, from the sequence diagrams, tasks T2 and T3

are base task and conjugate task; they have precedence
constraints because T3 can not be executed until T2 has
finished its execution and sent the signal
setRelativeTime. Similarly, tasks T3 and T4 have
precedence constraints between them. Task T4 will not
begin its execution until tasks T3 has recorded the
accumulation of ticks for one second.  Similarly,
precedence constraints exist between tasks T5/T6, and
tasks T6/T7.

3.3. Representing Task Attributes in UML-
RT

We now show how to represent the resulting real-
time task set and associated temporal attributes using
the extensibility mechanism of UML.  The traditional
ways of extending UML are stereotypes, tagged values,
and constraints. A stereotype allows users to create new

kinds of problem-specific building blocks. It represents
the meaning and usage of the newly created element. A
tagged value provides new information in terms of
pseudo attributes in the element’s specification. Tags
are normally enclosed in braces in the form of {tag =
value}, but tags with long text values may be placed in
a separate compartment at the bottom of the classifier’s
icon. A constraint is a way of adding new rules or
modifying existing ones.  To realize the extension in
our model, we create an abstract data class that
encapsulates the seven-tuple (T, S, R, E, D, Pred,
Succ), as shown in Figure 11, where

T – The task type: a combination of rate-
based/periodic/sporadic/aperiodic and
preemptable/non-preemptable.  (We believe
that most active objects are best modeled
with the rate-based execution model [9], but
also support modeling object execution
using more traditional real-time task
execution models.)

S – The absolute start time (first release time) of
the task.

R – The execution rate of the task specified as (x,
y): x executions in y time units.  (A periodic
task with period y is specified as (1, y).)

E – The maximum expected execution time of the
task.

D – The relative response time (deadline) for the
task.

Pred – The predecessor task (or the environment)
that generates the signal to be processed.

Succ – The successor task (or the environment)
that receives the signal generated by this
task.

Figure 10: Sequence Diagram for showing and setting clock time.



In Figure 11, the abstract class is modeled with the
stereotype and tagged value mechanism. An instance of
the class, which is discussed next, is shown as well.
With this extension, all events in the system generated
either by capsules or the environment (to trigger
activities or state transitions) can be captured.

Returning to our AlarmClock example, in which
we previously identified eight tasks and their
precedence constraints (if any), the task set is
represented using the tuple notation as:
     π = {T1: (sporadic/nonpreemptable, 0, (1, infinity),
e1, 1ms, environment, TimeTickHardware)

T2: (periodic/preemptable, 0, (1, 1ms), e2, 1ms,
time service, T3 )

T3: (periodic/preemptable, 0, (1, 1s), e3, 1s, T2,
T4)

T4: (periodic/preemptable, 0, (1, 1s), e4, 1s, T3,
AlarmClockGui)

T5: (sporadic/preemptable, 0, (x5,y5), e5, d5,
environment, T6)

T6: (sporadic/preemptable, 0, (x5,y5), e6, d6, T5,
T7)

T7: (sporadic/preemptable, 0, (x5,y5), e7, d7, T6,
AlarmClockGui)

T8: (sporadic/preemptable, 0, (x5,y5), e8, d8,
environment, AlarmClockGui)}

The graphical representation of task T2 is shown as an
instance of the task class in Figure 11.  For space
considerations, we have omitted the graphical
representation of the other tasks.  Notice that some of
the temporal attributes in our example are specified
with variables.  These variables represent attributes that
we were unable to identify directly from the model, and
require user inputs.  However, our method clearly
identifies these attributes and makes it clear which
variables are yet to be defined during any phase of the
design.  (Note that the execution rates for tasks T6, T7,

and T8 are the same as the execution rate of task T5.
This is because of the precedence relations between
tasks T5, T6, and T7, and the fact that we expect task T8

(Exit Setting Clock) to be executed just as often as task
T5 (Enter Setting Clock).)

Using this method, a task set for schedulability
analysis based on the UML-RT model of the system
can be successfully developed. Thus, the schedulability
of the application can be evaluated for a given
scheduling algorithm as soon as the temporal
parameters are fully specified. If the task set is not
schedulable, some temporal parameters will need to be
adjusted to acceptable ranges, or more seriously the
system may need to be re-designed.  Thus, the earlier
we discover such problems in the design process, the
better.  By doing scheduling analysis, confidence that
the system being developed will work correctly with all
temporal parameters being met is gained before the
final stage of product development. Our method strictly
follows all of the concepts in UML-RT. Moreover, the
newly introduced abstract data class is realizable with
minor extensions and promotes temporal properties to
first-class attributes of the application.

4. Related Work
State machines in UML are based on statecharts

presented by Harel in [6] to deal with the specification
and design of complex discrete-event systems such as
multi-computer real-time systems, and communication
protocols. His approach recognizes the states/events
pair for describing the behavioral aspects of complex
systems. Statecharts extend conventional state diagrams
with three additional elements: levels of states, inter-
level transitions, and communication between
concurrent components. Harel’s work turns the method
of state diagrams into a highly integrated and structured
language. Although Harel also advocated associating
parameters with states, and verify the description of a

(abstract class) (instance)

<<task>>
TaskA

{signal = ProtocolA.signal1}

T
S
R
E
D
Pred
Succ

<<task>>
Task2

{signal =
TimeTickInterface.
setRelativeTime }

T = periodic/preemptable
S = 0
R = (1, 1ms)
E = e2
D = 1ms
Pred = time service
Succ = T3

Figure 11:Class diagram-task



system against a Temporal Logic (TL) [18]
specification of the system, we are not aware of any
extensions of UML that do so.

Another specification language for real-time
systems is modechart, which was first proposed by
Jahanian and Mok [7, 8] and later extended by
Brockmeyer et. al. [3]. A mode is defined as a partition
of the overall states of a system that represents a
modular specification of large state machines. Similar
to statecharts, modes are recognized in different levels
hierarchically and connected by mode transitions. At
the same level, modes are either serial or parallel.
Modechart is described semantically with real time
logic (RTL) [8] to verify absolute timing constraints.
RTL was invented with the purpose of specifying
timing properties, in both relative and absolute form, of
events in real-time systems. Certain actions are
supposed to happen upon the occurrence of some
events. An action normally has two events associated
with it, one represents the initialization of the action,
and the other is its completion.

These methods certainly have their usage and
advantages when specifying requirements. Moreover,
they can be used to validate real-time systems against
the temporal parameters captured by them. However,
we conjecture practitioners have been slow to adopt
these methods because of their complexity. It would
also seem that these methods rely primarily on the
behavioral state/event pairs of real-time systems
without providing adequate support modeling other
aspects of the system. Thus, we have focused our
research in this area on UML-RT, which is likely to be
widely accepted by the object-oriented real-time
community.

This work was greatly influenced by [19] in which
Selic proposed an extension to ROOM models to
support schedulability analysis. By recognizing that
digital computers actually transform continuous-time
signals into series of events that occur at regular time
intervals, the concept of a periodic timer was
introduced for ROOM models. A periodic timer was
defined as a six-tuple Tp: (T, D, C, A, P, X). T is the
period of the timer. D is the deadline. C is the execution
time. A is the destination to which the timeout event
will be sent. P is the priority of the timeout event, and X
is an optional data item accompanied with the timeout
message. With this extension, Selic claimed it would be
possible to perform scheduling analysis from ROOM
models, but no details were given. Selic only
considered periodic tasks triggered by a timer. Other
events initiated by an object, or by the system
environment, were not addressed.

This work is most closely related to research
conducted by Saksena and his co-authors [15, 16, 17].
Though their research concerning schedulability
analysis of object-oriented real-time systems was

originally based on ROOM, it directly applies to UML-
RT, as shown in [17]. While there has been other work
done on determining the schedulability of object-
oriented real-time systems (e.g., [1, 4, 5, 10]), to the
best of our knowledge, only Saksena and his co-authors
have developed a systematic approach for capturing the
temporal attributes of an application from the UML-RT
model.  Their method uses an extended sequence
diagram to identify a causal set of actions (called a
transaction) that are executed as a result of an external
event.  As stated previously, our method differs
primarily in that we use the protocol signals associated
with each port of a capsule to identify the initial task
set. Once the task set and associated temporal
parameters have been identified using our method, the
schedulability analysis work of Saksena and Karvelas
in [17] can be applied for fixed priority scheduling
algorithms. To the best of our knowledge,
schedulability analysis for real-time applications with
an object-oriented design and executed with a deadline-
driven scheduling algorithm remains an open problem.

5. Conclusions
We have presented a method to capture temporal

parameters of a real-time application by extending
UML-RT.  The method has three steps: (1) create the
initial real-time task set from the actions performed in
response to events handled by active objects in the
system; (2) refine the task set by identifying precedence
constraints in the causal set of actions using a sequence
diagram; and (3) represent the resulting real-time task
set and associated temporal attributes using the
extensibility mechanism of UML.  The third step of our
method creates an abstract class in the UML-RT model
to store the temporal parameters and other relevant
information.

Our method has three benefits. First, it enhances
the description and modeling of a real-time system by
capturing more temporal parameters and making them
first-class attributes in the model. Second, it enriches
(UML and) UML-RT and can easily be integrated into
tool sets that support such modeling. Third, and perhaps
the most significant, it helps ensure that a real-time
system modeled with UML-RT is schedulable (so no
deadlines will be missed) and such analysis can begin
early in the design process.

We are currently working to automate our method
to generate a task set for schedulability analysis
automatically from a UML-RT model.  We are also
evaluating our method with more complicated real-time
systems.



References
[1] M. Awad, J. Kuusela, and J. Ziegler. Object-

Oriented Technology for Real-Time Systems:
Practical Approach using OMT and Fusion,
Prentice Hall, 1996.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling language User Guide, Addison
Wesley Longman, Inc., 4th Printing, 1999.

[3] M. Brockmeyer, F. Jahanian, C. Heitmeyer and B.
Labaw, “Debugging and Testing Real-Time
Specifications: A Flexible, Extensible Simulation
Environment for the Modechart Toolset,” Real-
Time Technology and Applications Symposium
Workshop (RTAS). June 1997.

[4] A. Burns and A. J. Wellings. “HRT-HOOD: A
Design Method for Hard Real-Time,” Real-Time
Systems, 6(1):73–114, 1994.

[5] H. Gomaa. Software Design Methods for
Concurrent and Real-Time Systems. Addison-
Wesley Publishing Company, 1993.

[6] D. Harel, “Statecharts: A Visual Formalism for
Complex Systems,” Science of Computer
Programming 8 (1987), pp. 231-274.

[7] F. Jahanian and A. Mok, "Modechart: A
Specification Language for Real-Time Systems,"
IEEE Transactions on Software Engineering, vol.
20, no. 12, Dec. 1994.

[8] F. Jahanian and A. K. Mok, “Safety Analysis of
Timing Properties in Real-Time Systems,” IEEE
Trans. Software Engineering, vol. SE-12, Pages
890-904, Sept. 1986.

[9] K. Jeffay and S. Goddard, “A Theory of Rate-
Based Execution,” Proceedings of the 20th IEEE
Real-Time Systems Symposium, Dec. 1999, pp.
304-314.

[10] L. Kabous and W. Nebel. “Modeling Hard Real-
Time Systems with UML the OOHarts
Approach,” Proceedings, International
Conference on Unified Modeling Language
(UML’99), 1999.

[11] J. W. S. Liu, Real-Time Systems, Prentice Hall,
2000.

[12] A. Lyons, “UML for Real-Time Overview,”
ObjecTime Ltd., http://www.objectime.com/, Apr
1998.

[13] W. E. McUmber and B. H.C. Cheng, “UML-
Based Analysis of Embedded Systems Using a

Mapping to VHDL,” 4th IEEE International
Symposium on High-Assurance Systems
Engineering, November 17-19, 1999, pp. 56-63.

[14] Rational Software Corporation, Rational Rose
RealTime 6.0
http://www.rational.com/products/rosert/, April
2000.

[15] M. Saksena, P. Freedman, P. Rodziewicz,
“Guidelines for Automated Implementation of
Executable Object Oriented Models for Embedded
Control Systems,” Proc. of the Real-Time Systems
Symposium, Dec. 1997, pp. 240-251.

[16] M. Saksena, A. Ptak, P. Freedman, P. Rodziewicz,
“Schedulability Analysis for Automated
Implmentations of Real-Time Object-Oriented
Models,” Proc. of the Real-Time Systems
Symposium, Dec. 1998, pp. 92-102.

[17] M. Saksena and P. Karvelas, “Designing for
Schedulability: Integrating Schedulability
Analysis with Object-Oriented Design,” to appear
in Proc. of the 12th Euromicro Conference on
Real-Time Systems, June 2000.

[18] R. L. Schwartz and P. M. Melliar-Smith,
“Temporal Logic Specification of Distributed
Systems,” Proc. 2nd IEEE International
Conference on Distributed Computer Systems,
1981, 446-454.

[19] B. Selic, “Periodic Tasks in ROOM,” Workshop
on OO Real-Time Systems, ACM OOPSLA ’95,
Austin Texas, Oct. 15-19, 1995.

[20] B. Selic, “Turning Clockwise: Using UML in the
Real-Time Domain,” Communications of The
ACM, Vol. 42, No. 10, October 1999, pp. 46-54.

[21] B. Selic, G. Gullekson, and P.T. Ward, Real-Time
Object-Oriented Modeling, John Wiley and Sons.
1994.

[22] B. Selic and J. Rumbaugh, “Using UML for
Modeling Complex Real-Time Systems,”
ObjecTime Ltd., http://www.objectime.com/,
March 11, 1998.

[23] J. Shahani and S. Garone, “The Rose Family
Grows,” International Data Corporation,
http://www.idc.com, August 1999.


