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Abstract moving targets. In a multi-agent system, the agents might
We present a task model for adaptive real-time tasks iHQynam|caIIy hegotiate with eac_h other and.declzlde the execu-
tion rate for each agent. Multimedia applications are com-

which a task’s execution rate requirements are allowed to o > ; .
: . ._~mon applications with dynamic soft QoS requirements. For
change at any time. The model, variable rate execution

VRE) | tens: f th te-based i RBE xample, a video decoder decodes 30 frames per second and
( ). Is an extension of the rate- ased execution (. it changes its QoS requirements when it degrades its service
model. We relax the constant execution rate assumption o

: X ) uality by either reducing the resolution or skipping frames.
canonical real-time task models by allowing both the worstg,,an Wwith constant service quality, the encoding and decod-
case execution time (WCET) and the period to be variableing time of a MPEG frame can vary, depending on many
The VRE model also supports tasks joining and leavingactors such as the frame type or frame length [3].

the system at any time. A schedulability condition for the

; . In support of such dynamic QoS requirements, we first
VRE task model is presented that can be used as an on-ling ; ) X
P ntroduced thevariable rate executioWVRE) model in [22],

mission control for th n f new tasks of oo i . .
admission control test for the acceptance of new tasks o hich is essentially an extension of the rate-based execution

e T ertedRes) sk moce 15, Wi 2] and 23] cuson e
. ' P plementation and application of variable rate tasks in Linux,
demonstrate its correctness and analyze the overhead.

this work formally presents the theoretical model. The VRE
task model extends the RBE model to address dynamic QoS
. requirements by allowing tasks to execute with variable ex-
1. Introduction ecution rates and supporting a dynamic task set. It forms

Quiality of ServicdQoS) can be viewed as a spectrum of a foundation for feedback control or adaptive applications
execution rate guarantees: hard real-time tasks are assignethere task execution rates change during runtime. For ex-
an execution rate to meet all deadlines; soft real-time taskample, as shown in [23], the exact execution rate need not
are assigned a rate that meets most deadlines; non-real-tinie known for soft real-time or non-real-time applications;
tasks, without any deadline, are assigned a best-effort ratistead, an approximate execution rate can be assigned to an
that will not affect the hard and soft real-time tasks. Mostapplication and then dynamically adjusted during runtime.
con\{ent|onal real'-t|me.> operatmg systems prpwde both time- In the VRE model, a variable rate task is denoted by a
sharing and static priority scheduling algorithms, but theyfo

. . . ur-tuple (x;(t), y:(t), d;(t), c;(t)) where each parameter
ﬁ?r:‘mmt rcegntrgl ]tcrhem%ecr:utlotn rste'nTh? trlrr:e:[sr:lharlrng algops represented as a function of time Similar to the RBE
s arebest-etiorivhere a task can saturate € processot, o . (¢) is the interval (or period) in which; (t) jobs

by creating enough short processes; the f[xed priority sphe are expected to be releasetl{t) is the relative deadline,
ulers are arall-or-nothingapproach where ill-behaved high which is typically equal to the periogh(t); ande; (¢) is the

priority. tasks can starve low p'riori.ty'tasks. Ther'efore, an,yorst-case execution time (WCET). By relaxing either or
execution rate control mechanism is important to isolate theooth theWCETandperiod, a task can change the size of its
exelcut|on? of different aplpllctgtlons. dto ch thei jobs and/or change the release frequency of the jobs. Sim-
h practice, many applications need to change their Qo lar execution patterns are also supported byrtie-based
requirements durlng runtime. In a multlple-ta_rget, multlple_- earliest deadlindRBED) scheduler [6], which was indepen-
sensor radar _trackln_g system, th_e tasks tracking fas_t-movmgently and simultaneously developed. The RBED scheduler
targets have tighter time constraints than tasks tracking SIOWﬁowever might delay the acceptance of new tasks, while thé
*Supported, in part, by a grant from the National Science FoundationVRE _mOdel can immediately_acce_pt neW_taSkS by changing
(CCR-0208619). pending deadlines (as described in Section 3.1). Moreover,
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the VRE model is a more general model than that assumed The Earliest Eligible Virtual Deadline First (EEVDF)

in [6]. [41] algorithm is another proportional-share algorithm that
The rest of this paper is organized as follows. Section 2employsvirtual time. The EEVDF algorithm puts all aperi-

discusses related work. Section 3 presents the VRE modebdic jobs into the same queue and assigns a deadline for each

Section 4 presents the theoretical correctness and a schedujab. According to task weighb;, release time, and execu-

bility condition. Section 5 presents our evaluation results oftion timer*, the virtual eligible timeve and virtual deadline

a VRE scheduler implemented in Linux as a loadable mod«d of a task are computed using equations presented in [41]

ule. We conclude with a summary in Section 6. and summarized as follows:

(k)
r veftl = pd®),

2. Related Work vel = V(t); vd* = ve* +

A variable execution rate is not a new idea. It comes with w;
the concept of multi-programming. In conventional time- _ o o ) o
sharing systems, tasks actually execute at variable rateg,he virtual tlme in EE_VDF is identical to the definition in
which depend on the total number of tasks in the systemYVFQ, shown in Equation (1).

In Linux, a process receives a time slice in a variable length  Although time-sharing and proportional-share systems
period, which is the sum of the time slices of all running actually execute tasks at variable rates, they do not explicitly
processes. state the variable execution rate in real time units. Instead,

In proportional-share systems, a task essentially runs at tasks are viewed as running at a constant virtual rate on a vir-
variable execution rate as well, depending on the sum of alfual processor whose speed varies. Obviously, without ex-
weights. This is why most proportional-share systems havélicit admission control algorithms neither time-sharing nor
the concept ofvirtual time In real time, a task might be proportional-share systems can make any QoS guarantees—
running at a variable rate; in virtual time, the task is treatedif the number of tasks in the system grew very large, the
as executing at a constant rate. resulting execution rate for each task would be very low.

Weighted Fair Queueing (WFQ) [9] (also known as In the context of real-time systems, two canonical task
packet-by-packet generalized processor sharing (GPS)) is models are th@eriodic mode[21], where jobs are released
well-known proportional-share scheduling algorithm from every period, and theporadic mode[28], where jobs are
the networking literature. The WFQ scheduler associates #eleased with a minimum separation time. Although the two
weight to each connection session; all the connection segnodels guarantee temporal correctness, both are too strict
sions share the router's bandwidth in proportion to theirfor many applications. Thus, many variations of these mod-
weights. The transmission rate of each session dependds have been developed over the years.
on the combination of its weight and the summation of all A common technique to extending these models to pro-
weights. The virtual time(¢) is defined as follows: vide QoS guarantees to non-real-time and soft real-time ap-

. plications is to add a server task (e.g., [19, 39, 12, 10, 11, 2]).

V(E) = / 1 The server methods, on the one hand, guarantee a constant
(t) = =d; 1) . X ) <

0 Zj cA(r) W) execution rate for the server, WhICh par.tlal.ly satisfies the

QoS requirements of non-real-time (aperiodic) requests. On

wherew; is the weight of taski and A(7) is the set of ac-  the other hand, these models do not support explicit and dy-

tive tasks at time-. Thus, virtual time progresses at a rate hamic rate changes. Although some algorithms, such as
inversely proportional to the summation of all weights. That GRUB (Greedy Reclamation of Unused Bandwidth) [20],
is, the more sessions in the system, the slower transmissiodllow bandwidth reclamation, this is more like stealing spare

rate each session gets. time than adjusting the bandwidth (execution rate).

Two recent multimedia schedulers are built on WFQ, There have been many task models introduced over the
SMART [33] and BERT [4]. The SMART scheduler [33] years that relax the strict assumptions of the periodic and
prioritizes a task by two parametemiority andbiased vir-  sporadic task models without adding a “server” task. For ex-
tual finishing time (BVFT)The scheduler always chooses ample, theate-based executiofRBE) model [15] is a gen-
the task with the highest priority. When multiple tasks are ateralization of the sporadic model that was developed to sup-
the same priority level, the scheduler tries to satisfy as manyort the real-time execution of event-driven tasks in which
BVFTs as possible. BERT [4] is essentially an implementa-no a priori characterization of thectual arrival rates of
tion of W F2Q plus a cycle stealing mechanism. Worst-caseevents is known; only thexpectedarrival rates of events
Fair Weighted Fair Queuindg¥ F2Q) [5] is an extension of are known. A RBE task is parameterized by a four-tuple
WFQ that prevents a task from getting executed faster thafz, y, d, ¢). The task is expected to proces®vents every
expected in a perfect fair share scheduler. WHilé2Q y time units, where each event takes no longer théime
provides proportional sharing, the cycle stealing mechanisnunits and event processing must be completed witttime
provides a flexible way for urgent tasks to meet their dead-units of its arrival. Rate is achieved by deadline assignment.
lines when their demands exceed their shares. The jth job of a RBE task;, J;;, is assigned a deadline as



follows: based earliest deadlindRBED) scheduler presented by
Brandt et al. in [6]. In that work, the authors try to “flat-
Di(j) = tij +d; if1<j<umz ten the scheduling hierarchy” by supporting hard real-time,
! max(t;; +d;, Di(j — i) +y;) if § > soft real-time, and non-real-time tasks with a single sched-
@) uler. Their algorithm allows periodic tasks to dynamically
change utilizations and periods. While the RBED scheduler
delays the acceptance of new tasks until some tasks termi-
ate and there is enough bandwidth available, a VRE sched-
ler releases the required bandwidth by adjusting existing
eadlines. The details are discussed in Section 3.1. The un-
derlying task model assumed by Brandt et al. in [6] is a gen-
. : . -~ eralization of the Liu and Layland periodic task model [21].
gr;':\te norl—real—nme tasks into the RBE model without usingr,o vRE model is a generalization of the RBE task model,
a server task. In.that mc_)del, RBE _tas.ks reserve a constanf nich js o generalization of Mok’s sporadic task model [28].
computing bandwidth while all aperiodic tasks share the '®rhe VRE task model reduces to the task model in [6] when
m_aining computing capa_city in proporti_on to thgir Weight.. z;(t) = 1,Vi,t, and jobs are released with a strictly (vari-

X e . ble) periodic pattern rather than a (variable) sporadic pat-
at runtime, each aperiodic request actually runs at a varlabl§ern

rate.

S_everal Iresearchers ha}ve Qeveloped techniques for SUB \/RE Task Model
porting variable computation times and/or release patterns . ) ) )
(e.g., [26, 27, 42, 43]). However, each of these provides N conventional real-time terms, a task is a sequential pro-
relatively strict bounds on how much these parameters ar§ram that executes repeatedly in response to the occurrence
allowed to vary, as compared to the VRE model presented)f events. Each instance of the task is called a job or a task

here. Researchers have also proposed methods for reducifi¢ptance. Each job of a task is assumed to execute no longer
task execution rates or computation times in overload condithan a constant bound called the worst-case execution time

tions (e.g., [1, 17, 18, 29, 30, 31, 38]). (WCET). Classic real-time task models include gegiodic

The first work to provide explicit increasing and decreas-task model [21], in which jobs are generated everyme
ing hard QoS guarantees on a task-by-task basis appears its for some constamt and thesporadictask model [28],
be theelastictask model created by Buttazzo, Lipari, and in which jobs are generated no sooner than epeiyie units
Abeni [8]. In the elastic task model, a task is parameterized0r some constarp. Therate-based executio(RBE) task
by a five-tuple(C, T, Trmin, Tmaz, €) WhereC' is the tasks’s model [15] is a generalization of the sporadic task model
WCET, Ty, is the nominal period for the task, ,;,, andT},q. that allows early release patterns. It makes no assumptions
denote minimum and maximum periods for the task, aisd about the relationships between the points at which jobs are
an elastic coefficient. The elastic coefficierispecifies the  released for a task; it assumes jobs are generated at a precise
flexibility of the task to vary its utilization” [8]. In this case, average rate butthe actual arrivals of jobs in time is arbitrary.
the utilization is varied by changing the length of the period, Thevariable-rate executiofVRE) task model provides two
which is allowed to “shrink” taT},,;,, or “stretch” t0T},u., primary extensions to these models: (i) variable WCET and

depending on the system load. The VRE model presente@€riods, which may change at any timend (i) a dynamic
here also allows the period of a task to shrink or stretch. Inf@sk set in which tasks are allowed to enter and leave the
the VRE model, however, no bounds on the length of theSystem at arbitrary times.
period are defined a priori. Moreover, the VRE model also : ;
supports increasing and decreasing the WCET, which is no?'l' Variable Rate Execution
supported by the elastic task model. In contrast to a RBE task, a VRE task reserves an initial
Other researchers have taken a system-level approach #xecution rate and then may dynamically adjust its execu-
support adaptive real-time computing (e.g., [7, 24, 25, 34tion rate by changing either its WECT or its period. If the
36, 40, 32, 35, 16, 37]). Most of these systems focus orexecution rate of a task does not change, VRE task execution
over-load conditions and use various combinations of valueis identical to RBE task exectuion. Moreover, if a VRE task
based scheduling, mode changes, and/or feedback mechaever generates more than one job simultaneously and never
nisms to shed or reduce load in an attempt to meet the mosthanges it execution rate, it reduces to a sporadic task.
critical deadlines. While the VRE model is designed to sup- Following the notation of the RBE model, a VRE task
port adaptive real-time computing systems, it tries to provideis described by four paramete(s;(t), y;(t), d;(t), ¢;(t)).
a predictable and changeable execution rate. Thus, a VRBimilar to the RBE modely;(t) is the interval in which
system will never over-load if its schedulability conditions «;(¢) jobs are expected to be releasdgt) is the relative
are met. deadline, which is typically equal to the perigg(t); and
The work most similar to the VRE model is thiate-  ¢;(¢) is the WCET. (We assumg (¢t) = y;(t) in this work.)

wheret;; is the release time of job;;. The RBE model
schedules tasks at average rates. It does not, however,
low any of the task parameters or the set of tasks to vary aj;
runtime.

The enhancedRBE model [13] was designed to inte-
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Figure 1. The initial executionrateis  (1,4,4,2). Figure 2. The initial executionrateis  (1,4,4,1).
At time 4, the execution rate changes to At time 8, the execution rate changes to
(1,4,4,1), and the execution rate changes back (1,3, 3,1), and the execution rate changes back
to (1,4,4,2) attime 12. to (1,4,4,1) attime 14.

Rather than the constant rate of the RBE model, each pathe acceptance of new tasks until some running tasks termi-
rameter is a variable, which may change during runtime. Tonate and enough bandwidth is released.

effect a rate change, a VRE task can change either its exe- In some cases, however, the new tasks might have tighter
cution time,¢;(t), or its job release raté;;(¢),y;(t)). To  time constraints than some running tasks, and we want to
reflect the ability of a task to change its execution rate, thammediately change the execution rates of the low-priority
deadline assignment function of Equation (2) is extended taounning tasks. In these cases, the deadlines of a low-

Equation (3) as follows. priority task’s pending jobs are modified such that demand

is bounded and the bandwidth is released immediately.

Di(j) = {tij +d;(t) if 1< j<ag(t) As previously stated, we assume in this work hat) =
T max(tiy + di(t), Di (G — xi(8) +wi(t)) i § > i) y:(t), which allows an efficient on-line admission and rate-
©) change control function. Observe that the fraction of the

wheret;; is the release time of jol;. CPU allocated to any one job of a VRE taBk at timet

Figures 1 and 2 are two simple examples that illustrates fi(t) = 278 Ideally, if eitherc;(t) or y;(t) changes at
how the variable rate execution model works. For simplic-some timet,, then each of the pending deadlines of task
ity, the rate changes in these examples are made at task dedd-can be re-computed by dividing the expected remaining
lines, but this is not required. In Figure 1, the initial execu- service time required to complete the pending job by its new
tion rate is(1,4,4,2), and thec;(t) parameter is adjusted fraction f;(¢,) and adding this to time,. Let D;(j) be a
during runtime. Attimet = 4, the WCET is changed from pending deadline and be the expected remaining service
2 to 1. Thus, execution rate changegto4,4,1), and the  time, which is the amount of service time that would remain
next two execution intervals each require at most 1 time unitin a perfectly fair system. The new deadline is computed
At time t = 12, the task’sc;(t) parameter is changed to 2, using Equation (4).

and the execution rate changes back to its initial specifica- r

tion: (1,4, 4,2). This example might represent a scenario in Di(j) =to + (4)
RS . ; Filt)

which a video player changes its resolution and needs more

or less execution time in an interval gf(¢) time units. In a perfectly fair system, the remaining service times

A scenario in which a video player skips frames is showncomputed as
in Figure 2. In this case, thg;(t) parameter is adjusted
during runtime. The initial execution rate specification is N [P B ,
(1,4,4,1), and at timet = 8 the execution rate changesto ' Silte, Di(7)) = /tl fil®)dt = (Di(j) = ta) - filte — 1)
(1,3,3,1). The execution rate changes backtop4, 4, 1) at (5)

timet = 14. wheresS; (t,,t,) denotes the service time the job of tagk
Adjusting Pending Deadlines. Equation (3) defines the would receive in a perfectly fair system during the interval
deadline assignment rule for newly released jobs. Howevelit1,t2] and f;(t, — 1) is the fraction of the processor that
a task may have pending jobs when its rate changes sinogould have been allocated to the joblgfin the interval.
“early releases” are allowed. The simplest approach to han- By combining Equations (4) and (5), the pending dead-
dling pending jobs is to keep the rate unchanged until all of dine can be rewritten using Equation (6).

task’s pending jobs are completed. Thus, the deadlines of the

pending jobs are not modified once they are released. Thep, .

B, 4 Silta D))

(Di(j) —ta) - fitz — 1)

=tz +

RBED scheduler [6] uses this method. Since the utilization fi(ta) fi(tz) ®)
is always100 percent in a mixed system if there exists any =ty + (Ds(j) — ta) - filta — 1)
best-effort task, the RBED scheduler actually has to delay fi(ta)



Equation (6) actually assumes that the lag of the job is
zero. The lag is defined as the difference between the ideal
and actual service times. That i&g,(t,) = S;(0,t,) —
5:(0,t,), wheres; (0, t,) is the actual service time received
in the interval. The lag may be zero, strictly negative, or
strictly positive. If the lag is strictly negative, the job is ex-
ecuting ahead of its ideal execution rate. This case never
creates a problem because the rate change function of Equa-
tion (6) moves the deadline based on an ideal execution rate,
and simply not executing the job for a period of time equal

to % would eliminate the lag, which was assumed to
be zero.

If the lag is strictly positive, the task is proceeding behind
its ideal service time. If a rate change at timeresults in
fi(te — 1) > fi(ts), then the deadline will be postponed,
which gives time for the lag to return to zero as the job’s
actual execution rate “catches up” to its ideal rate. The only
possible problem arises whef(t, — 1) < f;(t.). In this
case, the new deadline is moved to an earlier time, but it must
be large enough to allow the actual service time to “catch

the job,¢;(t.) < s;(t.), the rate change takes place at
the end of the current execution period—or at the next
earliest point at which the job’s lag reduces to zero, and
the new deadline is assigned using Equation (3).

Rule 2: y;(t) changes at timé¢,. Pending deadlines
of the task are adjusted by substitutis =) \yith

# z—)l) 1 quatlon( )

Yi(ta)

D;(j) = t:c"'mllr((Di(j)—tx)'m

itz —1)—si(te))-

Rule 3: z;(t) changes at timet,. This case is
different from the other two since the change in
the z;(t) parameter affects the total fraction of the
CPU allocated to the task, but not the fraction of
the CPU allocated to any one job of the task. Let
(Di(4), Di(j +1), Di(j +2),.... Di(j + k — 1),

D,(j + k)) be the set of pending deadlines ordered by
time. We treat all pending jobs to be released at time

up” with the ideal execution rate. Thus, with(¢,.) equal to

~al € _ _ ' Thus, the pending deadlines are modified as follows:
the actual service time at tintg, we rewrite Equation (6) as

follows: m
Dili+m) =t +yilte) - (L7=1+1), 0<m <k
D) = ta + maz(Di(9) — ) 2E = et = 1) = i)
™) We show in Section 4 that these deadline adjustments will

There are three parameters that can be used to adjust tI’i‘éJt affect temporal correctness of the task set.

rate of a VRE task;(t), y;(t), andx;(t). In the following, 3.2, Supporting a Dynamic Task Set
we respectively describe the three cases when only one pa-

rameter changes at a time. Simultaneous changes to more AS Stated previously, the VRE model supports a dynamic

than one parameter can be achieved by combining the corrdask setZ allowing tasks either to enter or to Igave the_ system

sponding rules. In the special case of simultaneous change¥ any time. When a new VRE task,.,, arrives at time

to ¢;(¢), andy; (t), the combination of Rules 1 and 2 reduce t; the task is tentatively added to the set of takKs) and

to Equation (7). the schedulability conditio} ;) fi(t) < 1, which is
presented in Section 4, is evaluated. An affirmative result

e Rule 1: ¢;(t) changes at time,. The pending dead- means that the task is accepted and deadlines are assigned

lines of jobs of task/; are changed to accommodate the ysing Equation (3).
change in WCET, as long as the ney(t,,) parameter Theoretically, a task leaves the system when its lag
is greater than the amount of time already consumedyeaches zero. At this point in time, the fraction of the pro-
Since, in this case, cessor allocated to that task can be allocated to another task,
and the task is removed from the task set. Usually when a
job finishes before its deadline, however, it has negative lag.
Thus, if the last job of task; executed fok; (¢) time units,
the fraction of the processor allocated to tdskcannot be
re-allocated until the deadline of that job is reached.

In an implementation of the task model, there are two
simple options for tracking the system utilization when jobs
enter and leave. The first method is to set a timer to expire
at the deadline of the last job of a terminating tdgkWhen
the timer expires at timey, the lag has reached zero and
the task is removed from the task set. In practice this sim-
If the newc;(t,) parameter is less than or equal to the ply means subtracting;(t¢) - fi(ty) from the total allocated
actual amount of execution time already consumed byprocessor utilization.

ST et —1)

Ci(tm) ’

Cl(tm)

substitutingf"']ﬁfa:)l) with ciﬁf&:)l) in Equation (7), we

get the following equation:

Ci(t;]) — 1)

D;(j) = ty+max((D;(j)—tz)- i (ta)

sCifte—1)=si(tz))-



Alternatively, when a task finishes with non-zero lag, the which depends on the actual valuesgof, t,o, ...t25 1.
deadline of the last job can be inserted in a queue sorted by If the rate change takes effect immediately (as opposed to
non-decreasing finish times. Using this method, the task ishe end of an execution interval for the task), the least upper
not removed from the task set until its processor utilization isbound on demand is an even more complicated step function
needed by another task. This only happens when the schedthat can only be computed in advance if exact future times
lability condition yields a negative result. At this point, all of rate changes are known. The following demand bound,
entries in the queue with finish times less than or equal to thénowever, is easy to compute and is tight at the deadline of
current time are dequeued. For each of these dequeued taskach job.
Viv zi(ty) - fi(ty) is subtracted from the total allocated pro- )
cessor utilization. If the schedulability condition still yields Lémma 4.1. Let V; be a variable rate task
a negative result, subsequent jobs in the queue with the nexi (1), ¥i(t), yi(t), ci(¢)).  If no job of V; released be-
earliest finish times are tentatively removed from the queud©'® timeto, > 0 requires processor time in the interval
and their processor utilizations subtracted from the total al%0: (] to meet a deadline in the intervib, I], then
located processor utilization. If there is still insufficient pro- .
cessor bandwidth, the new ta}sk is not z_:tlloweq Fojoin the sys- Vi > to, d/b\f([to, 1)) = / f;(t)dt 9)
tem. On the other hand, if this results in sufficient processor to
bandwidth being made available, the new task is allowed to . .
join the system, but lag of the jobs with future finish times '? aln uppet:r(;)gund ohn the r;ro_ceﬂs}s%r det_marf\d |nt_the |fn/terval
must be transferred to the new task. gt denote this set [to, 1] created by; er(is'f?((t)) IS the Traction function ov;
of jobs. The simplest way to transfer the lag of the jobs incomputed byf;(¢) = =7
Q5 to the new task/,.., is to set the deadline of the first job Proof: See [14]. 0

of V,,..w attimet is as follows:
lag;(t) Theorem 4.2. Let the task seV = | J;-, V(¢) be a set of
Diew(1) =t + dpew(t) — Z X0 (8)  variable rate tasks with;(t) = y;(t),1 < i < n. Preemp-
i€Qs tive EDF will succeed in scheduling if
Of course, there are many other ways of transferring the —
negative lag of jobs in the s€;. The advantages of this VL >0,L > dbf,(L) (10)
approach is its simplicity and the fact that the processor uti- jev
lization is updated only when necessary to accept a new tas .
(or an increase in the execution rate of a current task), whicrIFmOf' See [14] -

reduces overhead that might occur in a very dynamic taskCorollary 4.3. Let the task sep = Uiz, V(t) be a set of
set. variable rate tasks withl; () = y;(¢),1 < ¢ < n. Preemp-
4. Feasibility tive EDF will succeed in schedulingif Equation(11) holds

i . - N where f;(t) = Zci®) is the portion of the CPU capacit
This section presents a schedulability condition Whenallocatj;((j 20 varigb(lté rate task?at timet pacty
d;(t) = y;(t). We first define the processor demand bound ¢ '
for variable rate tasks. Then, we give a sufficient schedula-
oy e . ! 'L <
bility condition for the variable rate task set. We leave open vt Z r®) =1 (11)
the question of necessary and sufficient conditions since

they cannot be computed without a priori knowledge of rate  Equation (11) looks like the necessary and sufficient con-
changes, which precludes their use as on-line admission angition of EDF in [21], but it is actually different. The VRE
rate-change controller functions. model supports a dynamic task set in which tasks are al-

Given a variable rate task; = (i(t),y:(1), yi(t).¢i(t))  lowed to release jobs early. This means we can have inter-
and a specific time intervdl.o, t,x], assume that the rate yajs of time in which the utilization function is greater than
changes at time, 1, t.2, ... tuk—1,tz0 < to1 < ts2 < .. < 1 adjacent to intervals of time in which the utilization func-
tzx. For the case in which we change the rate after alkion |ess thanl, and the task set may still be schedulable.
pending deadlines are finished, the executiojotan be  Thys, Equation (11) is only sufficient, and not necessary. To
viewed as a sequence of intervals such that each interval i§evelop a tighter condition, which is both sufficient and nec-
a RBE task exectuion. According to [15], the least upperessary, the actual times of rate changes must be known a
bound on the processor demand in the inteftgl ;1] S priori. Since we do not make this assumption, it is infeasible
|ttt =tei | (2,5 - ¢i(ts;). Thus, the least upper bound to evaluate such a condition.

i€V (t)

i (bay
onyd(erﬁ)and is a sum of the demand in each of these intervals Corollary 4.3 can be used as the condition for admission
b1 and rate-change control. When a new variable rate task ar-
ZLMJ - 2i(tej) - ci(tej) rives or an existing variable rate task requests to change its
- Y (tes) rate, the system will recompute the sum of the fractions. If



Time 0 19 37 which is shown in Figure 4. All the jobs finished before

Agent1 | (1,20,20,2) | (1,20,20,2) | (1,20,20,6) : : ;
AgentZ | (12020 10)| (1.20.20.2) | (1.20.20.6) their deadlines. We can see a gap between the deadlines and

Agent3 | (1.20204) | (1.20.20.12)| (1.20 20.4) the finish times. Actually, th.e gap enlarged as time went
by. Since the three agents did not occupy all the processor
Table 1. Rate adjustment of the three agents. capacity, the remaining processor time was utilized by non-

real-time tasks, such as the shell. When we computed the
) _ execution rate of the non-real-time tasks, we rounded off a
the sum is less than or equal toaccept the request; oth- foatvariable to an integer variable. Thus, the non-real-time

erwise, reject the request. (See Section 3.2 for more detailgsks ran slower than expected, and the VRE tasks ran faster
on the use of such a condition for admission and rate-changg,an their assigned rate.

control.)
5. Evaluation o T
This section introduces our experimental results and over- oS /

head measurements. We first present an experiment which 050 |
focused on adjusting the execution rate and correctness. Fol-
lowing that, we discuss the overhead.

The scheduler was implemented as a loadable Linux
module on Redhat 8.0 (kernel version 2.4.18). Only a small
modification was made to the Linux kernel. Thus, users can
load or unload our scheduler without reboot. The experi- s6s0 |
ments were done on an IBM Thinkpad T30 with a 2.0G Hz
P4 processor and 256M DDR memory. We settthree tick

964.5 -

964.0 -

963.5 -

time since bootup (second)

962.5 -

to be1ms and recompiled the Linux kernel. When we refer T R
. . . . number of deadline

to an execution rate, we usdiek as the time unit. For ex-

ample, ratg1, 20, 20, 2) means 2 ticks (2ms) every 20 ticks Figure 4. Deadlines and finish times.

(20ms).

The first experiment was on adjusting the execution rates. In the Linux kernel, all running processes are put in a list
We simulated a multi-agent system, where three agents nesalledrunqueue The Linux scheduler scans the entire list
gotiate with each other to decide their execution rates duringnd selects the process with the highest priority. Our im-
runtime. The three agents did nothing but execute a null loogplementation also follows this pattern though another imple-
and change execution rates at specific times, shown in Tablmentation might be more efficient. Thus, the overhead shall
1. Figure 3 is the actual execution time of the three agents. Ibe a linear function of the number of running processes. We
is clear that the actual execution rate changes are consistenteasured the overhead of our scheduler, and compared it

with the assigned rates in Table 1. with the overhead of the original Linux scheduler. The over-
head was measured in CPU cycles, which was retrieved by
25 ‘ ‘ ‘ ‘ ‘ ‘ el the “rdtsc’ instruction (ead timestamp counter Figure 5
Agent3 shows that this implementation results in an at most 2.25%
ol i overhead for scheduling and context switching. More im-

portantly, the VRE scheduler provides assured and dynamic
QoS to processes, which the native Linux scheduler cannot
provide, with only a slight increase in overhead. These re-
sults are consistent with Brandt et al. in [6] where a slightly
simpler variable rate task model was implemented in Linux,
with the change made to the kernel rather that as a loadable
module. See [23] for a more detailed analysis of the imple-
mentation and performance of the VRE scheduler.

execution time

0 5 10 15 20rea‘ "meZS 30 35 40 45 6 . CO n CI us i O n
Figure 3. The actual execution time of the three We have presented the variable rate execution task model
agents. for real-time tasks in which execution rate requirements

might change during runtime. We called the new task model
variable rate executiofVRE). In the VRE model, we relax
We also sampled the deadlines of 180 jobs of the multi-the assumptions made by canonical real-time task models
agent task system and their corresponding finish timesby allowing both the worst case execution time (WCET) and
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Figure 5. The overhead is a linear function
of the number of processes under bother the
original Linux scheduler and our scheduler.
The overhead of our scheduler is a little bit
higher than the original Linux scheduler.

the period to be variable. An efficient schedulability con-

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

dition was also presented that can be used as an admission

and rate-change control function. A scheduler supporting

the VRE task model was implemented in Linux as a load-[13]
able module, and several experiments demonstrated its cor-
rectness and analyzed the overhead.
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