
Robust Aperiodic Scheduling under Dynamic Priority Systems

Marco Spuri Giorgio Buttazzo Fabrizio Sensini

Scuola Superiore S. Anna

via Carducci, 40 - 56100 Pisa - Italy

giorgio@sssupl.sssup.it, spuriQsssup2.sssup.it

Abstract

When hard periodic and f&-m aperiodic tasks are
jointly scheduled in the same system, the processor
workload can vary according to the arrival times of
aperiodic requests. In order to guarantee the schedu-
lability of the periodic task set, in overload conditions
some aperiodic tasks must be rejected.

In this paper we propose a technique that, in over-
load conditions, adds robustness to the joint schedul-
ing of periodic and aperiodic tasks in systems with dy-
namic priorities. Our technique is based on an ape-
riodic server, called Total Bandwidth server, already
proven effective in a previous work. Here the algo-
rithm is first extended to eficiently h,andle firm aperi-
odic tasks and then integrated with a robust guarantee
mechanism that allows to achieve graceful degradation
in case of transient overloads. Extensive simulations
show that the proposed new algorithm is effective in all
workload conditions.

1 Introduction

Real-time systems must be able to handle not only

periodic tasks, but also aperiodic tasks, that is, tasks
with irregular arrival times. Periodic tasks are gener-

ally used to implement activities such as sensory ac-
quisition or control loops, which need to be executed
at constant rates to insure system stability. Hence,
periodic tasks often have hard deadlines that must be
met under all anticipated circumstances.

On the other hand, aperiodic tasks are usually em-
ployed to implement less demanding and less critical

activities. For this reason they can have soft deadlines
(a deadline is soft- if when missed does not compromise

the security of the system), firm deadlines (a deadline
is firm if the execution of the task is useful for the
system only if completed within the deadline) or no
deadlines at all.

When aperiodic tasks do not have deadlines, the
goal of the system is to minimize the average response
time of their instances. A common approach that does
not jeopardize the schedulability of the hard tasks is

to introduce in the system a special purpose process

called server, whose computation time, or better ca-
pacity, is used to server the aperiodic requests. The
server is usually scheduled by a specific algorithm de-
signed in such a way that timing faults do not occur
within the critical task set and at the same time the
cpu is allocated to the server as soon as possible, in
order to improve the aperiodic response time.

A number of algorithms that solve this problem in

fixed priority systems can be found in the literature

[5, 9, 10, 131. Less attention has been dedicated to

the same problem in the context of dynamic priority
systems. Only recently a few works have appeared
[7, 131.

Much less attention, in our opinion, has been de-
voted to systems with firm aperiodic tasks. In this
case the problem is more difficult, since tasks that are
going to be late must be rejected in advance, in or-
der not to waste time in useless computations, try to

guarantee as much work as we can, and not jeopardize

the schedule of critical tasks.

A similar framework has been faced within the

Spring system [14], even though here the main fea-
ture was to maximize the number of completed tasks
and not the overall value of the system. In our model
we associate an importance value to each aperiodic
task: the value is gained only if the task is completed
in time. In this framework, the goal of the scheduling
algorithm is to maximize the value of the system.

The solution to this problem is not trivial, since

when there are aperiodic tasks whose arrival times are
not known a priori, the load of the system can vary
greatly from time to time. In particular, there can
be transient overloads, in which not all tasks can be
completed in time. In these conditions the algorithm
has to make some choices in order to establish who is

210
1i)52-8’725’95 $04.00 G 1.995 IEEE

going to miss, who is going to complet,e. Depending
on these ch.oices the overall value of the system can
consequently vary.

In this paper we introduce a mechanism which
provides a good solution of the problem under ear-
liest deadline scheduling. The mechanism is based on
an improved version of the Total Bandwidth server
[15, 161, th,at we have extended with al robust strat-
egy which improves the performance during transient
overloads.

With respect to the original formulation, the new
TB server includes two novel features: the reclaim-
ing of unused computation time and the possibil-
ity of adopting any preemptive scheduling policy for
the aperiodic task set (the older version was non-
preemptive). The improvement due to the new fea-
tures is illustrated in the discussion of our simulations.

The stra.tegy adopted to add robustness had been
already proven effective in a previous work [3]. It
adopts a planning EDF-based strategy, together with
rejection and recovery policies. Also in this new frame-
work, the strategy introduced graceful degradation
and effectiveness under any load condition.

2 Assumptions and Terminology

In the definition of our algorithms we will consider
the following assumptions:

l all periodic tasks ri : i = 1, n have hard dead-
lines;

b each periodic task ri has a constant period Ti and
a constant worst case execution time C;, which is
considered to be known, as it can be derived by
a stati’c analysis of the source code;

o the arrival time of each aperiodic ta,sk is unknown;

l the worst case execution time of each aperiodic
task is considered to be known at its arrival time;

e all aperiodic tasks have firm deadlines and can be
rejected (for the new definition of the improved
TB server we will temporarily assume aperiodic
tasks without deadlines).

For the sake of clarity, all properties of the proposed
algorithms will be proven under the iabove assump-
tions. However, they can easily be extended to handle
less restrictive assumptions such as deadlines different
from periods and inclusion of sporadic tasks.

The notation used throughout the paper is the fol-
lowing:

J denotes a set of active aperiodic tasks Ji ordered
by increasing deadline, 51 being the task with the
shortest absolute deadline.

ri denotes the arrival time of task Ji, i.e., the time at
which the task is activated and becomes ready to
execute.

Ci denotes the maximum computation time of task J;,
i.e., the worst case execution time (wcet) needed
for the processor to execute task Ji without in-
terruption.

(?‘i denotes the actual computation time of task Ji.

di denotes the absolute deadline of task Ji, i.e., the
time before which the task should complete its
execution in order to be useful for the system.

mi denotes the deadline tolerance of task Ji, i.e., the
maximum time that task J; may execute after its
deadline, and still produce a valid result.

wi denotes the task value, i.e, the relative importance
of task Ji with respect to the other tasks in the
set.

fi denotes the finishing time of task J;, i.e., the time
at which task Ji completes its execution and
leaves the system.

Ei denotes the exceeding time, i.e., the possible late-
ness of task Ji in case of overload.

In our model, an aperiodic task Ji is thus completely
characterized by specifying its worst case execution
time Ci, its deadline di , its deadline tolerance rni, and
its value vi. Within this framework tasks are sched-
uled based on the deadline assigned by a server, guar-
anteed based on Ci, di, mi, and rejected based on vi.

Throughout our discussion, we will assume that the
set of periodic tasks is scheduled on a uniprocessor sys-
tem by the Earliest Deadline First (EDF) scheduling
algorithm. Similarly, the aperiodic tasks are scheduled
within a TB server, described in the following section,
also with earliest deadline policy. Groups of tasks with
precedence constraints can also be handled by EDF
by modifying their deadlines and release times so that
both deadlines and precedence relations are met [l, 41.

3 The Total Bandwidth Algorithm

In [15] Spuri and Buttazzo proposed several algo-
rithms to joint schedule soft aperiodic tasks and hard
periodic tasks in earliest deadline scheduled systems.

211

Among these algorithms, the Total Bandwidth server
showed t,he best performance/cost ratio. In this sec-
tion, the algorithm is briefly recalled and later ex-
tended with new features that further improve its be-

haviour. The new formulation, also useful in a frame-
work with firm aperiodic tasks, will then be integrated
in Section 4 with a mechanism that adds robustness
to the algorithm with respect to transient overloads in

the system.

3.1 The Original Formulation

The name of the Total Bandwidth server comes
from the fact that, each time an aperiodic request
enters the system, the total bandwidth (in terms of
cpu execution time) of the server, whenever possible,
is immediately assigned to it. This is done by sim-
ply assigning a suitable deadline to the request and to

schedule it according to the EDF algorithm together

with the periodic tasks in the system. The assignment
of the deadline must be done in such a way that on

one hand it is the shortest possible to improve the ape-
riodic responsiveness, but on the other hand it must
not jeopardize the schedule of periodic tasks.

The definition of the TB server is the following.
When the k-th aperiodic request arrives at time t =
r’k: it receives a deadline

di, = max(rk, dh-1) + 2,

where CI, is the maximum execution time of the re-
quest and Us is the server utilization factor (i.e., its
bandwidth). By definition da = 0. The request is
then inserted into the ready queue of the system and
scheduled by EDF, as any periodic instance.

Note that we can keep track of the bandwidth al-
ready assigned to other requests by simply taking the
maximum between rk and dk-1. Intuitively, the as-

signment of the deadlines is such that in each interval
of time the ratio allocated by EDF to the aperiodic

requests never exceeds the server utilization Us, that
is, the processor utilization of the aperiodic tasks is at
most Us. This is formally proven in [16], where the
definition and the formal analysis of this algorithm, as
well as several others, can be found. Hence, to state
the schedulability of a task set, it is sufficient to add
t,he utilization of the server to that of the other critical

tasks, and verify that Up + Us < 1.
In Figure 1, an example of schedule produced with

a TB server is shown. The first aperiodic request,
arrived at time t = 1, is serviced (i.e., scheduled)
with deadline di = ~1 -t $ = 1 + & = 9. Since

h j / : : b : : :
.j . .._._._......~.____.~ i j Ii ___....i .._ i _...... i $? i__

: : i : :

Figure 1: Total Bandwidth Server example.

there are more urgent periodic instances in the sys-
tem, the aperiodic activity is executed at time t = 5.
Similarly, the second request receives the deadline
d2 = max(rz,9) + $ = 13. Also in this case the
request is not serviced immediately. Instead, it is ser-
viced only at time t = 10. Note that the delay occurs
in spite of the early completion of the first aperiodic re-

quest, whose actual computation time is 1 (indicated
in parentheses in figure) instead of 2. Later we will

see how the response time is improved with the new
formulation of the TB server.

In spite of its simplicity, the TB server shows one of
the best performance results among the several servers
described in [16]. In this paper we have investigated
efficient algorithms to solve the problem of the joint

scheduling of both hard periodic and soft aperiodic
tasks. One of the algorithms, EDL, was shown to be

optimal. In normal conditions the TB server showed
a performance comparable to that of EDL, and was
the best among the practical algorithms. Considering

it has a very simple implementation and low run-time
overhead, it is an ideal candidate for actual systems.
For example, we have chosen TB as the algorithm for
aperiodic scheduling in the HARTIK kernel [2].

3.2 Adding Resource Reclaiming

In the original formulation, the behaviour of the

TB server strictly depends on the estimated maximum
execution time of each aperiodic task, since the dead-
lines are assigned based on this value. This may be a
drawback if the value is overestimated and it is much
greater than the mean execution time. If this happens,
the deadlines assigned by the server to aperiodic re-
quests are farther than necessary, and this may delay

their execution.

Of course, the algorithm cannot be clairvoyant, in

the sense that it cannot predict the actual execution
time of any aperiodic task. However, whenever a task
completes earlier, the actual execution time can be

212

used to keep track of the actual processor bandwidth
taken so far by the aperiodic load. Hence, the main
idea behind the proposed reclaiming technique is to
correct the assigned deadline as follows. Whenever a
request completes earlier, its actual execution time is
used to compute the deadline that could have been
assigned to it if its execution time had been known in
advance. This value is then used to compute the dead-
line for the next request. In the following, & denotes
the “corrected” deadline of the i-th task.

More for:mally, let de = 0 and fe = 0 by definition.
The server keeps a queue of aperiodic instances ready
to execute (we do not make any assumption on the
particular policy used to sort the aperiodic queue). At
any time, only the first task, referred to as active, has
a deadline assigned by the server and is then sched-
uled by the system. In particular, the i-th task to be
executed receives a deadline d: equal to:

where Ci is the maximum execution time of the task
and US is t.he server utilization factor. Pi, is the “cor-
rected” release time of the task and is computed as:

where ri is the actual release time of ,the task, that
is, its arrival time, di-1 and f;_r are the corrected
deadline and the completion time of the previous task,
respectively. At the task completion, the corrected
deadline c& is computed as:

where Ci is the actual execution time of the task. Be-
ing Ci < Ci, we have & 5 d:, that is, we try to reclaim
the unused computation time by assigning a shorter
deadline to the next request.

In Figure 2 the same example of Figure 1 is handled
with the new formulation of the TB server. As shown,
nothing changes for the first aperiodic task. However,
due to its early completion, the computation of the
deadline assigned to the second one takes advantage
of this. Thle new value of this deadline is 10, instead
of 13, the value computed with the older formulation.
In this case the task can be executed immediately and
the response time is then considerably improved.

To prove the schedulability of the TB server with
this new formulation we first show that the actual
aperiodic processor utilization cannot exceed Us, and
then that the overall utilization can be up to 100%.

UT = I,4

T,=4 Ci_l

T*=6 c,=3

Figure 2: Example with the new formulation of the
Total Bandwidth Server.

Lemma 1 In each interval of time [tl, tz], if Cape is
the total execution time actually demanded by aperi-
odic requests arrived at tl or later and served with
deadlines less than or equal to t2, then

Proof. By definition

Cape = c Ck.

Since the index lc indicates the order of execution,
there must be two indexes kl and k2 such that

It follows that

cape 5 5 c, = 5 (&-&)&’ = US 5 (&-f$,
k=kl k=kl k=kl

which, since &.__l 5 Fk, becomes

Finally, being &, < d& I tz and Fkl 2 rkl > tl, we

have
Cape I usct2 -h).

We can now prove the claimed result.

Theorem 1 Given a set of n periodic tasks with pro-
cessor utilization Up and a TB server with processor
utilixation Us, the whole set is feasibly scheduled if and

only if
UpfUs Il.

213

Proof. “If”. Suppose there is an overflow at time t.
The overflow must be preceded by a period of contin-
uous utilization of the processor. Furthermore, from

a certain point t’ on, only instances of tasks (periodic
or aperiodic) ready at t’ or later and having deadlines
less than or equal to t are run. Let C be the total exe-
cution time demanded by these instances. Since there
is an overflow at time t, we must have

t - t’ < C.

We also know that

n t-t’
Cc TCi + (t - t’)Us

i=l z
I (t - t’)(Up + Us).

It follows that

up-tus > 1,

a contradiction.
“Only If”. If an aperiodic request enters the sys-

tem periodically, say each Ts > 0 units of time, and
has execution time CS = 6’s = TsUs, the server be-
haves exactly as a periodic task with period Ts and
execution time Cs. Being the processor utilization
U = Up + Us, by Theorem 7 of [l l] we can conclude

that Up + US < 1. 0

3.3 A Preemptive Implementation

In the description of the TB server we have implic-
itly assumed that the aperiodic requests are serviced
non-preemptively. So far, we have only left unspec-
ified the policy for sorting the queue of the pending

requests, with the implicit hypothesis that the request
currently serviced cannot be preempted. However, a
preemptive implementation can be easily built as fol-
lows. When a new request is issued, it is inserted

into the server ready queue. If it must preempt the
current active request, we brake this one into two re-
quests. One is the part which has already run and the
other one is the part to be still executed. For the first
one we behave like for a normal aperiodic completion,
that is, we compute its corrected deadline, which will
then be used to assign a deadline to the new active
request. The second one, whose maximum execution
time is C - C, is kept in the server ready queue and
treated like a new request.

In the rest of this paper, we will always refer to this
new formulation with resource reclaiming and preemp-
tion features.

4 Robust Aperiodic Scheduling

In this section we first extend the TB server tech-

nique to deal with firm aperiodic requests and then
we introduce a robust guarantee mechanism capable
of achieving graceful degradation.

The extension of the TB server to firm aperiodic

tasks is straightforward. As illustrated in Section 3.2,

the TB server assigns to each aperiodic request a dead-

line d’ with which the request is then scheduled. The
earliest deadline scheduling mechanism guarantees the
completion of the task within this deadline. This fact
can be used in the following way: assuming d is the
actual deadline of the task, if d’ 5 d the task is guar-
anteed, otherwise it is rejected. The approach will be
better described in a later section.

Although useful, this form of extension to handle
firm aperiodic tasks is not yet enough. In fact, the

arrival rate of aperiodic tasks may vary during system
life. Consequently, the load of the system can change
significantly and the system can experience a number
of transient overloads.

If the scheduling algorithm is not able to deal with

these situations, we may have undesired results, such
as the so called domino effect, in which a missed dead-
line causes a series of subsequent deadlines to be also
missed.

There are two alternatives to solve the problem.
One is to assign an unnecessary large bandwidth to the
server, in order to limit the occurrences of overloads.

In this way we normally waste a lot of processor time,
when the actual load does not reach large values. The

second alternative is to introduce overload awareness
in our scheduling algorithm. This is the approach we

have followed and we will describe in what follows.

An effective strategy explicitly developed to han-
dle overload conditions is the RED algorithm [3]. The
main idea of RED is to use the Earliest Deadline First
algorithm in a planning mode, so as to predict dead-

line misses and depict the size of the overload, its du-
ration and its overall impact on the system. By using
this information, the algorithm is able t,o achieve op-
timal performance in normal conditions and graceful
degradation in overload conditions. A better descrip-
tion of the RED strategy will be given in the following
section.

Unfortunately, the RED algorithm cannot be easily
used for the joint scheduling of hard periodic and firm
aperiodic tasks. However, we can use the RED strat-
egy within a TB server. In this way we can achieve the
goal of optimal joint scheduling in normal conditions
and robustness during transient overloads.

214

4.1 The RED Algorithm

Although the EDF algorithm has been shown to

be optimal under many different conditions [6, 81, if

overload occurs, tasks may miss deadlines in an un-

predictable manner, and in the worst case, the per-

formance of the system can approach zero effective
throughput [12].

/ ,

Figure 3: RED Scheduling Block Diagram.

To increase flexibility in expressing time constraints
and to enhance the performance of the system in over-

load conditions, Buttazzo and Stankovic [3] proposed
to separate deadline and importance b;y introducing

two additional parameters into the task model: a task

value, which reflects the importance of t.he task in the

set, and a deadline tolerance, which is the amount of
time by which a specific task is permitted to be late.

The algorithm they proposed, called RED, tries to
increase the cumulative value in overload conditions
by using a rejection strategy that removes tasks based
on their values. The rejection policy searches for a
subset J* of least value tasks to reject in order to make
the current set schedulable. If J* is ret,urned empty,

then the overload cannot be recovered, and the newly

arrived task is not accepted.

The concept of deadline tolerance comes from the
fact that in many real applications, such as robotics,
the deadline timing semantics is more flexible than
scheduling theory generally permits. For example,
most scheduling algorithms and accompanying theory
treat the deadline as an absolute quantity. However,
it is often acceptable for a task to continue to execute

and produce an output even if it is late - but not too

late.

The general framework in which RED operates is

illustrated in Figure 3. Notice that, if a task cannot be
guaranteed by the RED algorithm at its arrival time, it
is not removed forever, but it is temporarily rejected in
a queue of non guaranteed tasks, called Reject Queue,
ordered by decreasing values, to give priority to the
most important tasks. As soon as the running task
completes its execution before its worst case finishing
time, a reco’very strategy tries to reaccept the highest

value task in the Reject Queue having positive laxity.

All rejected tasks with negative lax&y are removed
from the system, and inserted in another queue, called
Miss Queue, containing all late tasks, whereas all tasks
that complete within their timing constraints are in-
serted in a queue of regularly terminated jobs, called
Term Queue.

4.2 Implementation of the RTB Server

The RED algorithm represents a useful choice to

add robustness to our deadline scheduled system.

However, if we need a more general framework in

which both hard periodic tasks and soft aperiodic
tasks are managed, RED is no longer applicable. On
the other hand, a TB server is designed to handle a

similar situation, with the major drawback of treat-
ing only soft tasks without deadlines. The two tech-
niques can be usefully combined to achieve robustness
in the aperiodic load scheduling, still guaranteeing at
any time the feasibility of the critical load schedule.

The basic idea is very simple. By definition, the TB

server assigns a deadline to each aperiodic task and
schedules the task on the basis of this deadline, thus

guaranteeing its completion by that time. Hence, we

can simply compare this value with the actual deadline
of the task: if it is less than or equal to it the task is

guaranteed, otherwise it isn’t. Of course we can also
easily introduce a tolerance by adding it to the actual
deadline.

In particular, at each new arrival of a task J, the

algorithm RTB, illustrated in Figure 4, is executed.

The algorithm starts by initializing t at the current
time value and E, the maximum exceeding time, to

0. The new task J, is then inserted into the queue of
the server. If it becomes the new head of the queue a

preemption occurs, thus, as remarked in Section 3.3,
the event is treated like a termination for the previous
task which has executed for a time c (if the task has
not actually completed it is still kept in the queue
with its maximum remaining computation time). This
value, as well as r, is used to compute the corrected

deadline 2. Note that the values of v and d are also
updated by the routines that dispatch and terminate

the aperiodic tasks.

The maximum between t and d is then used to ini-
tialize the computation of the deadlines assigned by
the server to the ready aperiodic tasks. During the
computation, the maximum exceeding time is also de-
termined. If this value is zero the task is accepted

215

Algorithm RTH(J, Ja)

begin
t = current_time();
E = 0; /* Maximum Exceeding Time */
J’ = J u {Ja}; /* Insert J, in the

ordered task list */
Ic = position of J, in the task set J’;
if (k = I.) and (IJ’I > 1) then

d=r+ &;

db = ma.x(t, 2);

for i = /c to IJ’l do {

d: = d:_, + $--;

if (d; - d: + m; < -E) then
E = -(di - d: + mi);

become

if (,!3 = 0) then return (“Guaranteed”);
else {

J” = set of least value tasks
selected by the rejection policy;
if (J* is not empty) then {

reject all task in J’;
return (“Guaranteed”);

l
else return (“Not Guaranteed”);

1
end

F.igure 4: The RTB Algorithm

as guaranteed, otherwise a policy is used to possibly
select one or more tasks to be rejected. If the set re-
turned by the rejection policy is not empty the new
task is guaranteed, otherwise it is rejected. Note that

in case of rejection the task is not yet refused by the
system, but kept in a reject queue until either it is re-
covered or its laxity becomes negative. There is in fact
the possibility that by reclaiming the unused compu-
tation time of some other task we may recover it at a
later time.

4.3 Rejection Strategy

If a new task cannot be guaranteed, the RTB al-

gorithm tries to find lower valued tasks to be rejected
in order to guarantee the new one. For the sake of
generality, in the description of the algorithm we have
left unspecified the rejection policy. Let us describe a
possible choice.

Suppose we want to select the i-th task in the server
queue for rejection. The deadlines of all following

tasks are then advanced:

d’, = d’i_, + $, d’,+l = Ci+l
d’i+- . . .

us ’

d’i’,l
G+1 = d'i_, + - us ’ d';;, = d'i;, + 2, . , .

with

4+1 - d!’
z+l

= d; - d;_, = G,

d:,, - di;2 % = d; - d’i_, = e,

.

That is, all the deadlines from di+, on can be ad-

vanced by 5. Hence, a simple rejection policy is to

find the least valued task Ji, preceding the first ex-
ceeding time, such that $ > Em,,, where Emaa is
the maximum exceeding time. The task Ji is then se-
lected for rejection only if its value is less than the
value of the new task J,.

4.4 Recovery Strategy

When a task completes before its maximum execu-

tion time, its spare time can be reclaimed to execute
sooner the pending requests. This gives us a chance to
recover rejected tasks which still have a positive laxity.

The details of our recovery strategy are the follow-
ing. At the completion of a task at time t, the exit
routine computes the corrected deadline d = r + 6.

The deadlines of all tasks in the server queue can

thus be advanced by d - max(t,d), since di, the

deadline assigned to the head of the queue, becomes

max(t, 2) + & (it was max(t, 2) + k), dk+, becomes
GL di + U_c, and so on.

This means that we can recover a task from the
reject queue if the sum of the computation time saved
by all tasks completing within its laxity, is greater
than or equal to the maximum exceeding time caused
by the rejected task. Our attention, of course, is on
tasks with larger values.

5 Experimental Results

In this section we will briefly discuss the results of
the simulations we have carried out in order to eval-
uate the performance of the algorithms described in
the paper. Our first concern has been to measure the
improvement introduced in the performance of the TB

server by the new formulation, that is, by the reclaim-
ing of unused computation time.

A second set of experiments has been concerned
with the main issue of this paper, that is, the evalua-
tion of the RTB algorithm’s robustness with respect to

216

overload conditions in the system. In this case the al-
gorithm has been compared with a plain version of the
TB server implementing an EDF policy for the aperi-
odic tasks, and a version with a first level of guarantee.

In what follows, we will often distinguish between
nominal and actual loads. With the former term we
indicate loads computed by using worst case execu-
tion times. Vice versa, with the latter one we indicate
the same quantity computed by using actual execution
times. Furthermore, unless stated otherwise loads are
expressed as, absolute values. That is, values less than
1 represent feasible conditions, while values greater
than 1 represent overloaded conditions.

The different loads were generated by simulating
a Poisson aperiodic arrival, with random maximum
execution times chosen uniformly in a suitable range.
Similarly, the values assigned to the aperiodic tasks
were chosen randomly with a uniform distribution.

5.1 Old vs New TB Formulatison

Two versions of the TB server, obtained with the
old and the new formulation, respectively, have been
compared trying to understand the impact on the per-
formance of the resource reclaiming technique. To
achieve this goal we have set up a silmulation of a
system with 10 periodic tasks, for a global periodic
load UP = 0.7. The aperiodic load was obtained by
generating the arrival of 80000 aperiodilc tasks, whose
nominal 1oa.d was equal to 0.25. The average ratio of
t#he maximum execution time actually utilized by the
aperiodic tasks was varied between 0.5 and 1.0, thus
giving an actual aperiodic load varying from 0.125 to
0.25. The bandwidth Us assigned to the servers was
equal to 0.3.

In Figure 5 the resulting mean aperiodic response
times are reported for the two versions of the algo-
rithm, referred to as TB-94 and TB-95, respectively.
The reported values are normalized with respect to
the maximum computation times. The graph clearly
shows that the new version of TB takeis advantage of
the reclaiming technique under any condition. Only
when the iactual computation times are near their
maximum values the performance is comparable, as
expected. In all other cases the new vlersion shows a
significant improvement.

5.2 Robust TB Evaluation

In this second set of experiments we have evalu-
ated the performance of the robust algorithm, RTB,
described previously. In all experiments we have com-

Figure 5: Old vs New version of the TB server.

pared the algorithm with a “plain” version of TB and
a version with a “raw” guarantee.

The former, simply referred to as TB in the follow-
ing, is obtained by using the definition of TB with-
out any guarantee on the completion of the aperiodic
tasks. When a task arrives, it is inserted into the
server queue, sorted by increasing deadline, and sched-
uled, when it is the most urgent task, according to the
deadline assigned by the server.

The latter version, instead, is obtained as follows.
Each time a new task arrives the server computes the
deadline it will assign to it and to all other less urgent
tasks arrived earlier. Similarly to the RTB algorithm,
during the computation of the deadline also the maxi-
mum exceeding time is determined. At the end of the
computation, if the maximum exceeding time is 0 the
new task is guaranteed, otherwise it is rejected.

In the first experiment the three algorithms have
been compared in three situations of increasing peri-
odic load. In the second experiment we have varied
the unused computation time ratio of the aperiodic
tasks, thus measuring the impact of the reclaiming
technique.

5.2.1 Experiment 1: Hit Value Ratio vs In-

creasing Periodic Load

In this experiment we have compared the three men-
tioned algorithms in three situations with periodic
loads Up equal to 0.2, 0.5 and 0.8, respectively. The
bandwidth Us of the servers has been always set to
the remaining processor capacity. The nominal load
of the aperiodic tasks has been varied from 0.5 to 3.0,
with an actual load varying from 0.25 to 1.5 (obtained

217

with actual execution times in average equal to half of
the corresponding maximum values). The results of
the simulations are reported in Figure 6. In the ver-
tical axes of the graphs is represented the Hit Value
Ratio, that is, the ratio of the value achieved by the
system to the global value of the task set.

As shown by t,he three graphs, the behaviour of
the algorithms is similar in all conditions, with TB

showing the best performance until we have actual

overload, and RTB being the best otherwise. Not.e

that ev-en in underload conditions the performance of

RTB is comparable to that of TB.
In underload conditions we have a difference be-

tween the plain and the guaranteed versions. Further-
more, with large periodic loads the improvement of
the robust version in overload condit.ions is smaller:
compared to that shown with the other settings. The
reason for this behaviour is the intrinsic pessimism in
t,he guarantee routine. When the server bandwidth is

small, the deadline assigned to aperiodic tasks may be

significantly large. This value is then used as an upper

bound of the completion time of the task, hence the

algorit,hm may be quite pessimistic and unnecessarily
reject some tasks that can actually complete in time.
In the same situation the RTB algorithm is helped by
the reclaiming strategy, while the performance of the

GTB algorithm is compromised.
On the other hand, when the bandwidth of the

server is large (the periodic load is low) the robust al-

gorithms are less pessimistic and the improvement is

larger. In particular, RTB shows the robustness and
graceful degradation features we claimed previously.

5.2.2 Experiment 2: Hit Value Ratio vs Un-

used Computation Time

In t,his last experiment our intention was to identify
t,he impact of the reclaiming technique used in the
RTB algorithm. In order to do this. we have set up an
experimental framework with a periodic load Up =
0.5, given by ten tasks. The bandwidth assigned to
the servers was equal to 0.5. The nominal load of the
aperiodic task set was equal to 3.0. However, during
the experiment we have varied the ratio of the average
used computation time from 0.1 to 0.9. thus giving an
actual aperiodic load between 0.3 and 2.7.

The result of this experiment is illustrated in Fig-
ure 7. As previously, in the vertical axis we have rep-
resented the Hit Value Ratio.

In the graph we can see that for large values of the

used computation time ratio, i.e., for large loads, the
RTB offers the best performance. This confirms the
&ectiveness of the reclaiming strategy.

Figure 6: Performance with increasing periodic load.

218

05t

Figure 7: Impact of the reclaiming atrategy.

For smaller values, however, the result,s of the plain
version of TIB are slightly better than those of the ro-
bust version. Also in this case the difference is due
to the pessimism of the guarantee routine, not com-
pletely compensated by the reclaiming strategy. The
confirmation of this analysis comes from the perfor-
mance of the GTB version, worse than that of TB in
this condition.

6 Discussion and Conclusions

In this paper we have investigated the problem of
the joint hard periodic and firm aperiodic schedul-
ing under dynamic priority systems. In particular, we
have focused our attention on the problem of achiev-
ing graceful degradation and acceptable performance
during transient system overloads.

The solution we have proposed is based on the in-
tegration of an efficient aperiodic server, called Total
Bandwidth server, and a technique including a rejec-
tion and a reclaiming strategies, for the addition of
robustness. The resulting algorithm, called Robust
TB, have been tested with a number of experimental
simulations.

The experiments have shown the effectiveness of the
RTB algorithm. Most of it is due to the reclaiming
strategy, while the acceptance test and relative rejec-
tion strategy are sometimes a bit too pessimistic, es-
pecially when the bandwidth assigned to the server
is small. We believe this is the weakest part of the
algorithm and it needs more attention if we want to
improve the algorithm.

References

[I] J. Blazewicz, “Scheduling dependent tasks with different
arrival times to meet deadlines,” In E. Gelenbe, H. Beil-
ner (eds), Modelling and Performance Evaluation of Com-
puter Systems, Amsterdam, North-Holland, 57-65, 1976.

[2] G. Buttazzo, “HARTIK: A Real-Time Kernel for Robotics
Applications,” Proc. of Real-Time Systems Symposium,
201-205, 1993.

[3] G. Buttazzo and J. Stankovic, “RED: A Robust Earli-
est Deadline Scheduling Algorithm,” Proc. of 3rd Inter-
national Workshop on Responsive Computing Systems,
Austin, 1993.

[4] H. Chetto, M. Silly, T. Bouchentouf, “Dynamic Scheduling
of Real-Time Tasks under Precedence Constraints,” The
Journal of Real-Time Systems 2, 181-194, 1990.

[5] R.I. Davis, K.W. Tindell, A. Burns, “Scheduling Slack
Time in Fixed Priority Pre-emptive Systems”, Proc. of
Real-Time Systems Symposium, 222-231, 1993.

[6] M. Dertouzos, “Control Robotics: The Procedural Control
of Physical Processes,” Proceedings of the IFIP Congress,
1974.

[7] T.M. Ghazalie and T.P. Baker, “Aperiodic Servers In A
Deadline Scheduling Environment,” The Journal of Real-
Time Systems, to appear.

[8] J. Jackson, “Scheduling a Production Line to Minimize
Tardiness,” Research Report 43, Management Science
Research Project, University of California, Los Angeles,

1955.

[9] J.P. Lehoczky and S. Ramos-Thuel, “An Optimal Al-
gorithm for Scheduling Soft-Aperiodic Tasks in Fixed-
Priority Preemptive Systems,” Proc. of Real-Time Sys-
tems Symposium, 110-123, 1992.

[lo] J.P. Lehoczky, L. Sha, J.K. Strosnider, “Enhanced Ape-
riodic Responsiveness in Hard Real-Time Environments,”
Proc. of Real-Time Systems Symposium, 261-270, 1987.

[ll] C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard real-Time Environment,”
Journal of the ACM 20(l), 40-61, 1973.

[12] C. D. Locke, “Best Effort Decision Making For Real-Time
Scheduling,” PhD Thesis, Computer Science Dept., CMU,
1986.

[13] B. Sprunt, L. Sha, J. Lehoczky, “Aperiodic Task Schedul-
ing for Hard-Real-Time Systems,” The Journal of Real-
Time Systems 1, 27-60, 1989.

[14] J. Stankovic and K. Ramamritham, “The Spring Kernel:
A New Paradigm for Real-Time Systems,” IEEE Software,
8(3), 62-72, May 1991.

[15] M. Spuri, G. Buttazzo, “Efficient Aperiodic Service under
Ealiest Deadline Scheduling,” Proc. of Real-Time Systems
Symposium, 2-11, 1994.

[16] M. Spuri, G. Buttazzo, “Scheduling Aperiodic Tasks in
Dynamic Priority Systems,” TR ARTS Lab 94-06, Scuola
Superiore S.Anna, Pisa, 1994, submitted to The Journal
of Real- Time Systems.

219

