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Abstract 

In this paper we present four new on-line algo- 

rithms for servicing soft aperiodic requests in real-time 
systems, where a set of hard periodic lash is scheduled 

using the Earliest Deadline First (EDF) algorithm. 
All the proposed solutions can achieve full processor 

ulilization and enhance aperiodic responsiveness, still 
guaranteeing the ezecution of the periodic tads. Op- 

eration of dhe algorithms, performance, schedulability 

analysis, and implemenlation compleaity are discussed 

and compared with classical alternative solutions, such 

as background and polling service. Ezlensive simula- 

tions show that algorithms with contained run-time 

overhead present nearly optimal responsiveness. 
A valuable contribdion of this work is to provide the 

real-dime system designer with a wide range of practi- 

cal solu2ions which allow to balance eficiency against 
implementation complezity. 

1 Introduction 

Many complex control applications include tasks 
which have to be completed within strict time con- 
straints, called deadlines. If meeting a given deadline 
is critical for the system operation, and may cause 
catastrophic consequences, that deadline is considered 
to be hard. If meeting time constraints is desirable, 
but missing a deadline does not cause any serious dam- 
age, then that deadline is considered to be soft. In 
addition to their criticalness, tasks that require regu- 
lar activations are called periodic, whereas tasks which 
have irregular arrival times are called aperiodic. 

The problem of scheduling a mixed set of hard pe- 
riodic tasks and soft aperiodic tasks in a dynamic 
environment has been widely considered when peri- 
odic tasks are executed under the Rate Monotonic 
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(RM) scheduling algorithm [ll]. Lehocrky et ,al. 

[lo] investigated server mechanisms (Deferrable Server 
and Priority Exchange) to enhance aperiodic respon- 
siveness. Sprunt el al. [14] described a better ser- 
vice mechanism, called Sporadic Server (SS). Then, 
Lehocsky and Ramos-Thuel[8] found an optimal ser- 
vice method, called Slack Stealer, which is based on 
the idea of Ustealing” all the possible processing time 
from the periodic tasks, without causing their dead- 
lines to be missed. The same algorithm has been ex- 
tended in [13] to handle hard aperiodic tasks, and in 
[S], to treat a more general class of scheduling prob- 
lems. 

All these methods assume that periodic tasks are 
scheduled by the RM algorithm. Although RM is an 
optimal algorithm, it is static and in the general case 
cannot achieve full processor utilization. In the worst 
case, the maximum processor utilixation that can be 
achieved is about 69% [ll], whereas in the average 
case, for a random task set, Lehocrky et al. [9] showed 
that it can be about 88%. 

For certain applications requiring high processor 
workload, a 69% or an 88% utilieation bound can rep- 
resent a serious limitation. Processor utilisation can 
be increased by using dynamic scheduling algorithms, 
such as the Earliest Deadline First (EDF) [ll] or the 
Least Slack algorithm [12]. Both algorithms have been 
shown to be optimal and achieve full processor utilixa- 
tion, although EDF can run with smaller overhead. 

Scheduling aperiodic tasks under the EDF algo- 
rithm has been investigated by Chetto and Chetto [4] 
and Chetto el al. [5]. These authors propose accep- 
tance tests for guaranteeing single sporadic tasks, or 

group of precedence related aperiodic tasks. Although 
optimal from the processor utilisation point of view, 
these acceptance tests present a quite large overhead 
to be practical in real-world applications. 

Three server mechanisms under EDF have been re- 
cently proposed by Ghazalie and Baker in [7]. The 
authors describe a dynamic version of the known Dc 
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ferrable and Sporadic Servers [14], called Deadline De- 
ferrable Server and Deadline Sporadic Server, respec- 
tively. Then, the latter is extended to obtain a simpler 
algorithm called Deadline Exchange Server. 

The aim of our work is to provide more efficient al- 
gorithms for the joint scheduling of random soft aperi- 
odic requests and hard periodic tasks under the EDF 
policy. Our proposal includes four algorithms hav- 
ing different implementation overheads and different 
performances. We first present an algorithm, called 
Dynamic Priority Exchange, which is an extension of 
previous work under Rate Monotonic (RM). Although 
much better than background and polling service, it 
does not offer the same improvement as the others. 
A completely new “bandwidth preserving algorithm”, 
called Total Bandwidth Server, is also introduced. 
The algorithm significantly enhances the performance 
of the previous servers and can be easily implemented 
with very little overhead, thus showing the best per- 
formance/cost ratio. Finally, we present an optimal 
algorithm, the EDL Server, and a close approxima- 
tion of it, the Improved Priority Exchange, which has 
much less run-time overhead. They are both based 
on off-line computations of the slack time of the peri- 
odic tasks. The proposed algorithms provide a useful 
framework to assist an HRT system designer in select- 
ing the most appropriate method for his or her needs, 
by balancing efficiency with implementation overhead. 

In the definition of our algorithms, we assume that 
all periodic tasks have hard deadlines coincident with 
the end of their periods, constant period Ti and con- 
stant worst case execution time Ci. All aperiodic 
tasks do not have deadlines and their arrival time is 
unknown. 

For the sake of clarity, all properties of the proposed 
algorithms are proved under the above assumptions. 
However, they can easily be extended to handle peri- 
odic tasks whose deadlines differ from the end of the 
periods and that have non null phasing. In this case, 
the guarantee tests would only provide sufficient con- 
ditions for the feasibility of the schedule. Shared re- 
sources can also be included using the same approach 
found in [7], assuming an access protocol like the Stack 
Resource Policy [l] or the Dynamic Priority Ceiling 
[3]. The schedulability analysis would be consequently 
modified to take into account the blocking factors due 
to the mutually exclusive access to resources. 

Due to lack of space, all proofs and some of the 
simulations have been omitted. See [15] for a complete 
description. 

2 The Dynamic Priority Exchange Al- 
gorithm 

In this section we introduce the Dynamic Priority 
Exchange server, DPE from now on. The main idea 
of the algorithm is to let the server trade its run- 
time with the run-time of lower priority periodic tasks 
(under EDF this means a longer deadline) in case there 
are no aperiodic requests pending. In this way, the 
server run-time is only exchanged with periodic tasks, 
but never wasted (unless there are idle times). It is 
simply preserved, even if at a lower priority, and it can 
be later reclaimed when aperiodic requests enter the 
system. 

2.1 Definition of the DPE Server 

The DPE server is an extension of the Priority Ex- 
change server [lo] adapted to work with the EDF al- 
gorithm. In the definition of the server we make use 
of aperiodic capacities, associated to the server itself 
and to each deadline of periodic task instances. They 
are updated by the algorithm we are going to describe 
and, when greater than sero, are considered by the 
scheduler as schedulable entities. When scheduled, 
they are used to service pending aperiodic requests. 

The server has a specified period Ts and a capac- 
ity Cs. At the beginning of each period, the server’s 
aperiodic capacity, Ci, where d is the deadline of the 
current server period, is set to Cs. Each deadline d 
associated to the instances (completed or not) of the 
i-th periodic task has an aperiodic capacity, Cgi, ini- 
tially set to 0. The aperiodic capacities (those greater 
than 0) receive priorities according to their deadlines 
and the EDF algorithm, like all the periodic task in- 
stances (ties are broken in favour of capacities, i.e., 
aperiodics). Whenever the highest priority entity in 
the system is an aperiodic capacity of C units of time 
the following happens: 

a if there are aperiodic requests in the system, these 
are served until they complete or the capacity 
is exhausted (each request consumes a capacity 
equal to its execution time); 

a if there are no aperiodic requests pending, the 
periodic task having the shortest deadline is ex- 
ecuted; a capacity equal to the length of the ex- 
ecution is added to the aperiodic capacity of the 
task deadline and is subtracted from C (i.e., the 
deadlines of the highest priority capacity and the 
periodic task are exchanged); 



l if neither aperiodic requests nor periodic task in- 
stances are pending, there is an idle time and the 
capacity C is consumed until, at most, it is ex- 
hausted. 

In order to implement the algorithm, the only oper- 
ations required in case of deadline exchange, are to up 
date the values of two capacities and to check whether 
the ‘%unning” one is exhausted. Furthermore, the 
ready queue can be at most twice as long as with- 
out the server (there is at most one aperiodic capacity 
for each periodic task instance). From these simple 
observations we can conclude that whereas the im- 
plementation of a DPE server is not trivial, the run- 
time overhead does not significantly increase the typ- 
ical overhead of a system using an EDF scheduler. 

As far as the schedulability is concerned, the DPE 
server behaves like any other periodic task. The dif- 
ference is that it can trade its run-time with the run- 
time of lower priority tasks. When a certain amount 
of time is traded, one or more lower priority tasks are 
run at a higher priority level, but their lower priority 
time is preserved for possible aperiodic requests. This 
run-time exchange does not affect the achedulability 
of the task set, as shown in the following Theorem. 

Theorem 1 Given a set of periodic tab with pro- 
ceaaor utilizalion Up and a DPE server with processor 
utilization Us, the whole se2 is schedulable if and only 
if 

UP +us 5 1, 

where Up and US are the dilization factors of the pe- 
riodic iask set and the DPE server, respectively. 0 

2.2 Resource Reclaiming 

In most typical real-time systems, the processor 
load of periodic activities, either statically or dynam- 
ically, is guaranteed a-priori. This means that the 
maximum possible load reachable by periodic tasks is 
taken into account. When this peak is not reached, 
that is, the actual execution times are lower than the 
worst case values, it is not always obvious how to re- 
claim the spare time for real-time activities (a trivial 
approach is to execute background tasks). 

In a system with a DPE server is very simple to 
reclaim the spare time of periodic tasks for aperiodic 
requests. It is sufficient that when a periodic task 
completes, its spare time is added to the corresponding 
aperiodic capacity. An example of this behaviour is 
depicted in Figure 1. When the first aperiodic request 
enters the system at time d = 4, one unit of time is 
available with deadline 8, and three units are available 

Figure 1: DPE server resource reclaiming. 

with deadline 12. The aperiodic request can thus be 
serviced immediately for all the seven units of time 
required, as shown in the schedule. 

Without the reclaiming described, at time t = 4 
there would be a half unit of time available with dead- 
line 8 and two and a half units available with deadline 
12. The request would be serviced immediately for six 
units of time, but the last unit would be delayed until 
time t = 11, when it would be serviced in background 
(neither periodic tasks nor aperiodic capacities would 
be ready at that time). 

Note that reclaiming the spare time of periodic 
tasks as aperiodic capacities does not affect the 
schedulability of the system. It is sufficient to observe 
that, when a periodic task has spare time, this time 
has been already “allocated” to a priority level corre- 
sponding to its deadline when the task set has been 
guaranteed. That is, the spare time can be safely used 
if requested with the same deadline. But this is ex- 
actly the same as adding it to the task corresponding 
aperiodic capacity. 

3 The Total Bandwidth Algorithm 

A different approach that we can follow to improve 
the aperiodic response times is to assign a possible 
short deadline to each aperiodic request. The assign- 
ment must be done in such a way that the overall pr+ 
cessor utilization of the aperiodic load never exceeds 
a specified maximum value US. 

This approach is the main idea behind the Total 
Bandwidth Server (TBS), which we define in the fol- 
lowing section. The name of the server comes from 
the fact that, each time an aperiodic request enters 
the system, the total bandwidth of the server, when- 
ever possible, is immediately assigned to it. 
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Figure 2: Total Bandwidth server example. 

3.1 Deffnition of the TB Server 

The definition of the TB server is very simple. 
When the k-th aperiodic request arrives at time t = 

Tk, it receives a deadline 

where Gk is the execution time of the request and US 
is the server utilization factor (i.e., its bandwidth). 
By definition & = 0. The request is then inserted 
into the ready queue of the system and scheduled by 
EDF, as any other periodic instance or aperiodic re- 
quest already present in the system. 

Note that we can keep track of the bandwidth al- 
ready assigned to other requests by simply taking the 
maximum between fk and dk_1. Intuitively, as it is 
stated in Lemma 1, the assignment of the deadlines is 
such that in each interval of time the ratio allocated 
by EDF to the aperiodic requests never exceeds the 
server utilization US, that is, the processor utilization 
of the aperiodic tasks is at most Us. 

In Figure 2, an example of schedule produced by 
the TB server is depicted. The first aperiodic request, 
arrived at time t = 6, is serviced (i.e., scheduled) with 
deadline dl = ~1 + & = 6 + & = 10. 10 being the 
earliest deadline in the system,’ the aperiodic activity 
is executed immediately. Similarly, the second request 
receives the deadline dz = ~2 + e = 21, but it is not 
serviced immediately, since at time t = 13 there is 
an active periodic task with a shorter deadline (18). 
Finally, the third aperiodic request, arrived at time 
t = 18, receives the deadline d3 = max(rs, da) + @ = 

21+ & = 25 and is serviced at time t = 22. 
To ‘show that full processor utilization can be 

achieved with a TB server, too, we have first proved 
that the aperiodic processor utilization does not actu- 
ally exceeds US. 

Lemma 1 In each interval of time [tl,tz], if C,,,is 
the total ezecution time demanded by aperiodic re- 
quests arrived at tl or later and served with deadlines 

less than OT equal to t2, then 

Cape I (t2 - tips. 

Now the following Theorem holds. 

Theorem 2 Given a set of n periodic tasks with pro- 

cessor utilization Up and a TB server with processor 

utilization Us, the whole set is schedulable if and only 
if 

UP + us L 1. 

3.2 Implementation Complexity 

The implementation of the TB server is the sim- 
plest among those seen so far. In order to correctly 
assign the deadline to the new issued request, we only 
need to keep track of the deadline assigned to the last 
aperiodic request (dk_1). Then, the request can be 
queued into the ready queue and treated by EDF as 
any other periodic instance. Hence, the overhead is 
only due to the increased length of the ready queue 
if several aperiodic requests are pending at the same 
time. However, this problem can be solved by manag- 
ing a separate FIFO queue for the aperiodic requests, 
and inserting only the first one into the ready queue. 
In this way the overall overhead is practically negligi- 
ble. 

4 The EDL Algorithm 

The Total Bandwidth algorithm is able to achieve 
good aperiodic response times with extreme simplicity. 
Still we could desire a better performance if we agree 
to pay something more. For example, looking at the 
schedule in Figure 2, we could argue that the second 
and the third aperiodic requests may be served as soon 
as they arrive, without compromising the schedulabil- 
ity of the system. The reason for this is that, when 
the requests arrive, the active periodic instances have 
enough effective laxity (i.e., the interval between the 
completion time and the deadline) to be safely pre- 
empted. The main idea of the EDL algorithm is to 
take advantage of these laxities. 

4.1 Definition of the EDL Server 

The definition of the EDL server makes use of some 
results presented by Chetto and Chetto in [4]. In this 
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Figure 3: Availability function under EDL. 

paper, two different implementations of EDF, namely 
EDS and EDL, are studied. Under EDS the active 
tasks are processed as soon as possible, while under 
EDL they are processed as late as possible. An ac- 
curate characterixation of the idle times produced by 
the two algorithms is given. Moreover, a formal proof 
of the optimality, in the sense that it guarantees the 
maximum idle time in a given interval, is stated for 
EDL. In the original paper, this result is used to build 
an acceptance test for sporadic tasks (i.e., aperiodics 
with hard deadlines) entering the system, while here 
it is used to build an optimal server mechanism for 
soft aperiodic activities. 

Let us introduce the terminology used by the au- 
thors in [4]. With fy” they denote the availability 
function 

fat) = { 
1 if the processor is idle at t 
0 otherwise, 

defined with respect to a task set Y and a scheduling 
algorithm X. The function f;DL, with ,7 = {ri, +2}, is 
depicted in Figure 3. The integral of ff on an inter& 
of time [ti, tz] is denoted by n$(tl, ta): it gives the 
total idle time in the specified interval. 

The result of optimality addressed above is stated 
in Theorem 2 of [4], which we recall here. 

Theorem S Let A be any aperiodic task set and X 
any preemptive scheduling algorithm. For any instant 

fPjDL(O, t) > a,x(o,t). 
” 

This result lets us build an optimal server using the 
idle times of an EDL scheduler. In particular, given 
the periodic task set, the function f$, which is pe- 
riodic with hiperpetiod Ii = lcm(Z’r,. , . ,Tn), can 
be represented by means of two vectors. The first, 
&=(eo,ei,..., e,,), represents the times at which idle 
times occur, while the second, 2)’ = (A& Ai, . . . , A;), 

Figure 4: Idle times under EDL. 

Figure 5: Example of schedule produced with an EDL 
server. 

represents the lengths of these idle times. The two vec- 
tors for the example of Figure 3 are shown in Figure 4 
(note that we can have idle times only after the arrival 
time of a periodic task instance). 

The EDL server mechanism is based on the fol- 
lowing idea: the idle times of an EDL scheduler are 
used to schedule aperiodic requests as soon as pos- 
sible, postponing the execution of periodic activities, 
similarly to the effect of the “Slack Stealer” of [8]. 
The optimality stated in Theorem 3 will give us the 
optimality of the server built with this idea. 

In particular, when there are no aperiodic activities 
in the system, the periodic tasks are scheduled accord- 
ing to the EDF algorithm. Whenever a new aperiodic 
request enters the system (and no previous aperiodic is 
still active) the set .7(t) of the current active periodic 
tasks, plus the future periodic instances, is considered. 
The idle times of an EDL scheduler applied to .7(t), 
that is, $pt”, are then computed and consequently 
used to sche a ule the current aperiodic requests. See 
Figure 5 for an example. Note that the response time 
of the aperiodic request is optimal. 

The procedure to recompute at each new arrival the 
idle times of EDL applied to ,7(t) is described in [4] 
and is not reported here. The worst case complexity of 
the algorithm, which is O(Nn), where N is the number 
of distinct periodic requests that occur in [0, H[, and 
n is the number of periodic tasks, is relatively high 
and can give the algorithm little practical interest. As 
for the “Slack Stealer”, the EDL server will be used 
to provide a lower bound to the aperiodic response 
times, and to build a nearly optimal implementable 
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algorithm, described in the next section. 

4.2 EDL Server Properties 

The analysis of the EDL server schedulability is 
quite straightforward. In fact, the server allocates to 
the aperiodic activities only the idle times of a partic- 
ular EDF schedule, without compromising the time- 
liness of the periodic tasks. This is more precisely 
stated in the following Theorem. 

Theorem 4 Given a set of n periodic tasks with 
processor uti&aZion up and the corresponding EDL 
server (the behaviour of the server strictly depends on 

dhe characlerisiics of the periodic task set), the whole 

set is schedulable if and only if 

(the server automatically allocales 2he bandwidth 1 - 
Up to aperiodic requests). cl 

The property of optimality addressed above, that is, 
the minimization of the response times of the aperiodic 
requests, is stated in the following Lemma. 

Lemma 2 Let X be any on-line preemptive algo- 

rithm, .7 a periodic iask set, and J an aperiodic IV- 

quest. I.c;,~~l( J is the completion time of J when ) 
,7 u {J} is scheduled by X, then 

cl 

5 The Improved Priority Exchange Al- 
gorit hm 

Although optimal, the algorithm described in the 
previous section has too much overhead to be consid- 
ered practical. However, its main idea can be use- 
fully adopted to develop an implementable algorithm, 
still maintaining a nearly optimal behaviour, as shown 
later in the discussion of the simulations. 

What makes the EDL server not practical is the 
complexity of computing the idle times at each new 
aperiodic arrival. This computation must be done 
each time in order to take into account the periodic 
instances partially executed or already completed at 
the time of arrival. 

We can avoid the heavy idle time computation us- 
ing the mechanism of priority exchanges. With this 
mechanism, in fact, the system can easily keep track 

if j i i j i i ji j i) j i j  j,{) I j 1 /i* 
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Figure 6: Improved Priority Exchange server example. 

of the time advanced to periodic tasks and possibly 
reclaim it at the right priority level. The idle times of 
the EDL algorithm can be precomputed off-line. The 
server can use them to schedule aperiodic requests, 
when there are any, or to advance the execution of pe- 
riodic tasks. In the latter case the idle time advanced 
can be saved as aperiodic capacity at the priority lev- 
els of the periodic tasks executed. 

5.1 Definition of the IPE Server 

To obtain the Improved Priority Exchange (IPE) 
algorithm, we modify the DPE server using the idle 
times of an EDL scheduler. First, we obtain a far more 
efficient replenishment policy for the server. Second, 
the resulting server is no longer periodic and it can 
always run at the highest priority in the system. 

The IPE server is thus defined in the following way: 

the IPE server has an aperiodic capacity, initially 
set to 0; 

at each instant t = ei + kH, with 0 5 i 5 p 

and k > 0, a replenishment of Af units of time is 
scheduled for the server capacity, that is, at time 
t = eo the server will receive A: units of time 
(the two vectors & and 2)” have been defined in 
the previous section); 

the server priority is always the highest in the 
system, regardless of any other deadline; 

all other rules of IPE (aperiodic requests and pe- 
riodic instances executions, exchange and con- 
sumption of capacities) are the same as for a DPE 
server. 

The same task set of Figure 5 is scheduled with an IPE 
server in Figure 6. Note that the server replenishments 
are set according to the function fFDL, illustrated in 
Figure 3. 

The IPE schedulability is stated in the following 
Theorem. 



Theorem 5 Given a set of n periodic tasks with pro- 
censor utilization Up and the corresponding IPE server 
(the parametera of the server depend on the periodic 
task set), the whole set is schedulabh if and only if 

UP 5 1 

(the server automatically allocatea the bandwidth 1 - 
Up to aperiodic requests). 0 

The reclaiming of unused periodic execution time 
can be done in the same way as for the DPE server. 
When a periodic task completes, its spare time is 
added to the corresponding aperiodic capacity. Again, 
this behaviour does not affect the schedulability of the 
system. The reason is of course the same as for the 
DPE server. 

5.2 Implementation Complexity 

As for the resource reclaiming, even the implemen- 
tation complexity of IPE is similar to that of any other 
DPE server, at least from the time point of you. The 
two vectors & and 2)’ are in fact precomputed before 
the system is run. The replenishments of the server ca- 
pacity are no longer periodic, but this does not change 
the complexity. Finally, all the rest is perfectly the 
same, hence even the consideration on the implemen- 
tation complexity are comparable. 

What can change dramatically is the memory re- 
quirement. If the periods of periodic tasks are not 
harmonically related, we could have a huge hiperperiod 
H=lcm(Ti,..., TR), which would mean a great mem- 
ory occupancy to store the two vectors E and V’, since 
the memory occupancy is O(N), where N is the num- 
ber of distinct periodic requests that occur in [0, H[. 

6 Performance Results 

DPE, TBS, EDL and IPE algorithms have been 
simulated to compare the average response times of 
soft aperiodic tasks with respect to the response times 
obtained with background scheduling. This form of 
aperiodic scheduling is the simplest possible: the ape- 
riodic tasks are executed only when the processor 
would be otherwise idle, that is, no periodic task in- 
stances are ready to run. 

For completeness, also a Polling server and a dy- 
namic version of the Sporadic Server (DSS) [14, 151 
have been compared with the proposed algorithms. 

In all simulations, a set of ten periodic tasks with 
periods ranging from 100 and 1000 was chosen. Three 
periodic loads were simulated, by setting the processor 

utilization factor Up at 40%, 65% and 90%, referred in 
the following as low, medium and high periodic load, 
respectively. 

The aperiodic load for these simulations was var- 
ied across the range of proeessor utilization unused by 
the periodic tasks. The interarrival times (with av- 
erage T,) for the aperiodic tasks were modeled using 
a Poisson arrival pattern, whereas the aperiodic ser- 
vice times (with average T,) were modeled using an 
exponential distribution. 

Where applicable, the processor utilization of the 
servers was set to all the utilization left by the periodic 
tasks, that is, US = 1 -Up. The period of the periodic 
servers, namely Polling, DPE and DSS, was set equal 
to the average aperiodic interarrival time (T,) and, 
consequently, the capacity was set to CS = T, US. 

Unless otherwise stated, the data plotted for each 
algorithm represent the ratio of the average aperiodic 
response time relative to the response time of back- 
ground aperiodic service. The average is computed 
over ten simulations, in which a total of one hun- 
dred thousand aperiodic requests were generated. In 
this way, an average response time equivalent to back- 
ground service has a value of 1.0 on all the graphs. 
Hence, a value less than 1.0 corresponds to an im- 
provement in the average aperiodic response time over 
background service. The lower the response time 
curve lies on these graphs, the better the algorithm 
is for improving aperiodic responsiveness. 

6.1 Experiment 1: IPE vs. EDL 

In the first experiment, we have compared the per- 
formance of our IPE algorithm versus the optimal 
EDL server mechanism. The graph shown in Fig- 
ure 7 corresponds to a high periodic load. The ape- 
riodic load was generated using a mean interarrival 
time T, = 100 and varying the average aperiodic ser- 
vice time T, so that the total load covered, roughly, 
the range from U, to the full processor utilization. 

As can be clearly seen from the graph, the max- 
imum difference between the performance of the two 
algorithms is less than 0.2%, i.e., it is so small that can 
be reasonably considered negligible for any practical 
application. 

Although IPE and EDL have very similar perfor- 
mances, they differ significantly in their implementa- 
tion complexity. As mentioned in previous sections, 
the EDL algorithm needs to recompute the server pa- 
rameters quite frequently (namely, when an aperiodic 
request enters the system and all previous aperiodics 
have been completely serviced). This overhead can 
be too expensive in terms of cpu time to use the algo- 
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Figure 7: Comparison between IPE and EDL server. 

rithm in practical applications. On the other hand, for 
the IPE algorithm we only have to compute off-line 
the parameters of the server. Then, at run-time, as- 
suming we have enough memory, the implementation 
complexity is the same as for a DPE server, which is 
quite reasonable. 

In summary, IPE has nearly the same performance 
of EDL, but with much less overhead. For this rea- 
son, the EDL server performance is not reported in all 
subsequent simulations. Moreover, the performance of 
the IPE server will be the reference in the following 
experiments. 

6.2 Experiment 2: Response Time vs. 
Aperiodic Load 

In the second experiment, we tested the perfor- 
mance of all algorithms as a function of the aperiodic 
load. The load was varied by changing the average 
aperiodic service time, while the average interarrival 
time was set at the value of T, = 100. 

Figure 8 presents the results of these simulations. 
In this figure, three graphs are presented, which cor- 
respond to the different periodic loads simulated, low, 
medium and high respectively. In each graph, the 
average aperiodic response time of each algorithm is 
plotted with respect to that of background service as 
a function of the mean aperiodic load Uclpe = k. 

As can be seen from each graph, the TBS and IPE 
algorithms can provide a significant reduction in aver- 
age aperiodic response time compared to background 
or polling aperiodic service, whereas the performance 
of the DPE and DSS algorithms depends on the ape- 
riodic load. For low aperiodic load, DPE and DSS 
perform as well as TBS and IPE, but as the aperiodic 
load increases their performance tends to be similar to 

Figure 8: Algorithms performance with different pro- 
cessor loads. 
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erage response time of each algorithm is represented 
as a function of the parameter A, which ranges from 
0 to 0.5. The case A = 0 corresponds to the situation 
in which the actual execution times are equal to the 
worst case ones. In this particular situation the result 
is equivalent to that shown in a previous experiment. 

As soon as A becomes greater than rero, that is, 
the actual execution times become less than the worst 
case ones, the performance of the DPE server tends to 
be much better, and also tends to approach the perfor- 
mance of the TB server. This behaviour is confirmed 
for all other values of A, thus proving the effectiveness 
of the reclaiming technique used in the DPE and IPE 
algorithms. 

Figure 9: Response times vs. unused computation 
times. 

that one shown by the Polling server. 
Note that, in all graphs, TBS and IPE have about 

the same responsiveness when the aperiodic load is 
low, and they exhibit a slightly different behaviour for 
heavy aperiodic loads. 

6.3 Experiment 3: Response Time vs. 
Unused Periodic Task Computation 
Time 

The goal of this experiment was to verify the ef- 
fectiveness of the resource reclaiming technique, de- 
scribed in Section 2.2, which can be used in the algo- 
rithms DPE and IPE. In order to do this, we have com- 
pared the performance of the five algorithms (Polling, 
DPE, DSS, TBS and IPE) on a number of task sets, 
in which the actual execution times of periodic tasks 
were less than the worst case ones. The estimated pe- 
riodic load, computed using the worst case execution 
times, was set to 65%. The mean interarrival time 
of the aperiodic requests was set to 100 units, while 
the mean aperiodic service time was set to 25 units, 
thus giving a total estimated processor load of 90%. 
The actual execution time cek,j of the ith instance of 
the ith periodic task was generated using the following 
formula: 

In this paper we have introduced five novel on-line 
scheduling algorithms for real-time systems with dy- 
namic priorities. Namely, all algorithms exploit the 
well known Earliest Deadline First policy to deal with 
both soft aperiodic and hard periodic tasks. All al- 
gorithms have been characterised in terms of schedu- 
lability and implementation complexity. For two of 
them, DPE and IPE, a simple resource reclaiming 
technique has been designed and proved to be effec- 
tive. Finally, extensive comparisons have been carried 
out in different experiments. 

ae$,j = Ci * rnd( 1 - 2A, l), 

The experimental simulations have established 
that, from a performance point of view, IPE and EDL 
show the best results. Although optimal, EDL is far 
from being reasonably practical, due to the overall 
complexity. On the other hand, IPE is able to achieve 
a comparable performance with much less computa- 
tional overhead. Both algorithms may have significant 
memory demands when the periods of the periodic 
tasks are not harmonically related. 

where Ci is the worst case execution time of the task, 
rnd(a, b) is a function that returns a random number 
in the interval [o, 51, using a uniform distribution, and 

the parameter A, which is 
C;-E[a&, ci ‘l, represents the 

average ratio of the unused computation times. 

The Total Bandwidth algorithm has shown a very 
good performance, sometimes comparable to that of 
the nearly optimal of IPE. Observing that its im- 
plementation complexity is among the simplest, one 
could consider this to be a good candidate for practi- 
cal systems. 

The result of the simulation can be seen in the Even though a bit more complex, the DPE and the 
graph shown in Figure 9. In the vertical axis the av- DSS algorithms show slightly worse performance, al- 

From the graph, we can see that the TBS algorithm 
shows a good behaviour, too, although no explicit re- 
claiming has been designed for it. Finally, also the 
Polling and the Sporadic servers show good improve- 
ments, due to the lower actual periodic load. However, 
their performance is always significantly worse, com- 
pared to the others. 

7 Discussion and Conclusions 

10 



though they both provide better responsiveness than 
the Polling server and the naive background service. 

With this work we have covered a wide spectrum of 
algorithms dealing with aperiodic service. Consider- 
ing also other works in the literature, the real-time de- 
signer that wishes to build a system with dynamic pri- 
orities should now have a sufficient number of choices 
for designing an efficient aperiodic service mechanism. 
In particular, in all those applications in which the 
periodic load is fixed, the aperiodic service algorithm 
can be chosen to balance efficiency against complexity. 

As future work, we are considering to use the algo- 
rithms presented in this paper as a basis for handling 
hard aperiodic tasks. The main goal will be to build 
a uniform solution in which hard aperiodic tasks can 
be dynamically guaranteed [2], while average response 
times of soft aperiodic tasks can be predicted with 
reasonable accuracy. 
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