
Efficient Aperiodic Service under Earliest Deadline Scheduling

Marco Spuri* Giorgio C. Buttazzo

Scuola Superiore S.Anna
via Carducci, 40 - 56100 Pisa - Italy

ap~iOpegasns.sssup.it,giorgioOsssupl.sssupp.it

Abstract

In this paper we present four new on-line algo-

rithms for servicing soft aperiodic requests in real-time
systems, where a set of hard periodic lash is scheduled

using the Earliest Deadline First (EDF) algorithm.
All the proposed solutions can achieve full processor

ulilization and enhance aperiodic responsiveness, still
guaranteeing the ezecution of the periodic tads. Op-

eration of dhe algorithms, performance, schedulability

analysis, and implemenlation compleaity are discussed

and compared with classical alternative solutions, such

as background and polling service. Ezlensive simula-

tions show that algorithms with contained run-time

overhead present nearly optimal responsiveness.
A valuable contribdion of this work is to provide the

real-dime system designer with a wide range of practi-

cal solu2ions which allow to balance eficiency against
implementation complezity.

1 Introduction

Many complex control applications include tasks
which have to be completed within strict time con-
straints, called deadlines. If meeting a given deadline
is critical for the system operation, and may cause
catastrophic consequences, that deadline is considered
to be hard. If meeting time constraints is desirable,
but missing a deadline does not cause any serious dam-
age, then that deadline is considered to be soft. In
addition to their criticalness, tasks that require regu-
lar activations are called periodic, whereas tasks which
have irregular arrival times are called aperiodic.

The problem of scheduling a mixed set of hard pe-
riodic tasks and soft aperiodic tasks in a dynamic
environment has been widely considered when peri-
odic tasks are executed under the Rate Monotonic

*This work has been supported in part by the CNR of Italy
under a research grant.

(RM) scheduling algorithm [ll]. Lehocrky et ,al.

[lo] investigated server mechanisms (Deferrable Server
and Priority Exchange) to enhance aperiodic respon-
siveness. Sprunt el al. [14] described a better ser-
vice mechanism, called Sporadic Server (SS). Then,
Lehocsky and Ramos-Thuel[8] found an optimal ser-
vice method, called Slack Stealer, which is based on
the idea of Ustealing” all the possible processing time
from the periodic tasks, without causing their dead-
lines to be missed. The same algorithm has been ex-
tended in [13] to handle hard aperiodic tasks, and in
[S], to treat a more general class of scheduling prob-
lems.

All these methods assume that periodic tasks are
scheduled by the RM algorithm. Although RM is an
optimal algorithm, it is static and in the general case
cannot achieve full processor utilization. In the worst
case, the maximum processor utilixation that can be
achieved is about 69% [ll], whereas in the average
case, for a random task set, Lehocrky et al. [9] showed
that it can be about 88%.

For certain applications requiring high processor
workload, a 69% or an 88% utilieation bound can rep-
resent a serious limitation. Processor utilisation can
be increased by using dynamic scheduling algorithms,
such as the Earliest Deadline First (EDF) [ll] or the
Least Slack algorithm [12]. Both algorithms have been
shown to be optimal and achieve full processor utilixa-
tion, although EDF can run with smaller overhead.

Scheduling aperiodic tasks under the EDF algo-
rithm has been investigated by Chetto and Chetto [4]
and Chetto el al. [5]. These authors propose accep-
tance tests for guaranteeing single sporadic tasks, or

group of precedence related aperiodic tasks. Although
optimal from the processor utilisation point of view,
these acceptance tests present a quite large overhead
to be practical in real-world applications.

Three server mechanisms under EDF have been re-
cently proposed by Ghazalie and Baker in [7]. The
authors describe a dynamic version of the known Dc

1052-8725/94 $04.00 0 1994 IEEE

ferrable and Sporadic Servers [14], called Deadline De-
ferrable Server and Deadline Sporadic Server, respec-
tively. Then, the latter is extended to obtain a simpler
algorithm called Deadline Exchange Server.

The aim of our work is to provide more efficient al-
gorithms for the joint scheduling of random soft aperi-
odic requests and hard periodic tasks under the EDF
policy. Our proposal includes four algorithms hav-
ing different implementation overheads and different
performances. We first present an algorithm, called
Dynamic Priority Exchange, which is an extension of
previous work under Rate Monotonic (RM). Although
much better than background and polling service, it
does not offer the same improvement as the others.
A completely new “bandwidth preserving algorithm”,
called Total Bandwidth Server, is also introduced.
The algorithm significantly enhances the performance
of the previous servers and can be easily implemented
with very little overhead, thus showing the best per-
formance/cost ratio. Finally, we present an optimal
algorithm, the EDL Server, and a close approxima-
tion of it, the Improved Priority Exchange, which has
much less run-time overhead. They are both based
on off-line computations of the slack time of the peri-
odic tasks. The proposed algorithms provide a useful
framework to assist an HRT system designer in select-
ing the most appropriate method for his or her needs,
by balancing efficiency with implementation overhead.

In the definition of our algorithms, we assume that
all periodic tasks have hard deadlines coincident with
the end of their periods, constant period Ti and con-
stant worst case execution time Ci. All aperiodic
tasks do not have deadlines and their arrival time is
unknown.

For the sake of clarity, all properties of the proposed
algorithms are proved under the above assumptions.
However, they can easily be extended to handle peri-
odic tasks whose deadlines differ from the end of the
periods and that have non null phasing. In this case,
the guarantee tests would only provide sufficient con-
ditions for the feasibility of the schedule. Shared re-
sources can also be included using the same approach
found in [7], assuming an access protocol like the Stack
Resource Policy [l] or the Dynamic Priority Ceiling
[3]. The schedulability analysis would be consequently
modified to take into account the blocking factors due
to the mutually exclusive access to resources.

Due to lack of space, all proofs and some of the
simulations have been omitted. See [15] for a complete
description.

2 The Dynamic Priority Exchange Al-
gorithm

In this section we introduce the Dynamic Priority
Exchange server, DPE from now on. The main idea
of the algorithm is to let the server trade its run-
time with the run-time of lower priority periodic tasks
(under EDF this means a longer deadline) in case there
are no aperiodic requests pending. In this way, the
server run-time is only exchanged with periodic tasks,
but never wasted (unless there are idle times). It is
simply preserved, even if at a lower priority, and it can
be later reclaimed when aperiodic requests enter the
system.

2.1 Definition of the DPE Server

The DPE server is an extension of the Priority Ex-
change server [lo] adapted to work with the EDF al-
gorithm. In the definition of the server we make use
of aperiodic capacities, associated to the server itself
and to each deadline of periodic task instances. They
are updated by the algorithm we are going to describe
and, when greater than sero, are considered by the
scheduler as schedulable entities. When scheduled,
they are used to service pending aperiodic requests.

The server has a specified period Ts and a capac-
ity Cs. At the beginning of each period, the server’s
aperiodic capacity, Ci, where d is the deadline of the
current server period, is set to Cs. Each deadline d
associated to the instances (completed or not) of the
i-th periodic task has an aperiodic capacity, Cgi, ini-
tially set to 0. The aperiodic capacities (those greater
than 0) receive priorities according to their deadlines
and the EDF algorithm, like all the periodic task in-
stances (ties are broken in favour of capacities, i.e.,
aperiodics). Whenever the highest priority entity in
the system is an aperiodic capacity of C units of time
the following happens:

a if there are aperiodic requests in the system, these
are served until they complete or the capacity
is exhausted (each request consumes a capacity
equal to its execution time);

a if there are no aperiodic requests pending, the
periodic task having the shortest deadline is ex-
ecuted; a capacity equal to the length of the ex-
ecution is added to the aperiodic capacity of the
task deadline and is subtracted from C (i.e., the
deadlines of the highest priority capacity and the
periodic task are exchanged);

l if neither aperiodic requests nor periodic task in-
stances are pending, there is an idle time and the
capacity C is consumed until, at most, it is ex-
hausted.

In order to implement the algorithm, the only oper-
ations required in case of deadline exchange, are to up
date the values of two capacities and to check whether
the ‘%unning” one is exhausted. Furthermore, the
ready queue can be at most twice as long as with-
out the server (there is at most one aperiodic capacity
for each periodic task instance). From these simple
observations we can conclude that whereas the im-
plementation of a DPE server is not trivial, the run-
time overhead does not significantly increase the typ-
ical overhead of a system using an EDF scheduler.

As far as the schedulability is concerned, the DPE
server behaves like any other periodic task. The dif-
ference is that it can trade its run-time with the run-
time of lower priority tasks. When a certain amount
of time is traded, one or more lower priority tasks are
run at a higher priority level, but their lower priority
time is preserved for possible aperiodic requests. This
run-time exchange does not affect the achedulability
of the task set, as shown in the following Theorem.

Theorem 1 Given a set of periodic tab with pro-
ceaaor utilizalion Up and a DPE server with processor
utilization Us, the whole se2 is schedulable if and only
if

UP +us 5 1,

where Up and US are the dilization factors of the pe-
riodic iask set and the DPE server, respectively. 0

2.2 Resource Reclaiming

In most typical real-time systems, the processor
load of periodic activities, either statically or dynam-
ically, is guaranteed a-priori. This means that the
maximum possible load reachable by periodic tasks is
taken into account. When this peak is not reached,
that is, the actual execution times are lower than the
worst case values, it is not always obvious how to re-
claim the spare time for real-time activities (a trivial
approach is to execute background tasks).

In a system with a DPE server is very simple to
reclaim the spare time of periodic tasks for aperiodic
requests. It is sufficient that when a periodic task
completes, its spare time is added to the corresponding
aperiodic capacity. An example of this behaviour is
depicted in Figure 1. When the first aperiodic request
enters the system at time d = 4, one unit of time is
available with deadline 8, and three units are available

Figure 1: DPE server resource reclaiming.

with deadline 12. The aperiodic request can thus be
serviced immediately for all the seven units of time
required, as shown in the schedule.

Without the reclaiming described, at time t = 4
there would be a half unit of time available with dead-
line 8 and two and a half units available with deadline
12. The request would be serviced immediately for six
units of time, but the last unit would be delayed until
time t = 11, when it would be serviced in background
(neither periodic tasks nor aperiodic capacities would
be ready at that time).

Note that reclaiming the spare time of periodic
tasks as aperiodic capacities does not affect the
schedulability of the system. It is sufficient to observe
that, when a periodic task has spare time, this time
has been already “allocated” to a priority level corre-
sponding to its deadline when the task set has been
guaranteed. That is, the spare time can be safely used
if requested with the same deadline. But this is ex-
actly the same as adding it to the task corresponding
aperiodic capacity.

3 The Total Bandwidth Algorithm

A different approach that we can follow to improve
the aperiodic response times is to assign a possible
short deadline to each aperiodic request. The assign-
ment must be done in such a way that the overall pr+
cessor utilization of the aperiodic load never exceeds
a specified maximum value US.

This approach is the main idea behind the Total
Bandwidth Server (TBS), which we define in the fol-
lowing section. The name of the server comes from
the fact that, each time an aperiodic request enters
the system, the total bandwidth of the server, when-
ever possible, is immediately assigned to it.

4

Figure 2: Total Bandwidth server example.

3.1 Deffnition of the TB Server

The definition of the TB server is very simple.
When the k-th aperiodic request arrives at time t =

Tk, it receives a deadline

where Gk is the execution time of the request and US
is the server utilization factor (i.e., its bandwidth).
By definition & = 0. The request is then inserted
into the ready queue of the system and scheduled by
EDF, as any other periodic instance or aperiodic re-
quest already present in the system.

Note that we can keep track of the bandwidth al-
ready assigned to other requests by simply taking the
maximum between fk and dk_1. Intuitively, as it is
stated in Lemma 1, the assignment of the deadlines is
such that in each interval of time the ratio allocated
by EDF to the aperiodic requests never exceeds the
server utilization US, that is, the processor utilization
of the aperiodic tasks is at most Us.

In Figure 2, an example of schedule produced by
the TB server is depicted. The first aperiodic request,
arrived at time t = 6, is serviced (i.e., scheduled) with
deadline dl = ~1 + & = 6 + & = 10. 10 being the
earliest deadline in the system,’ the aperiodic activity
is executed immediately. Similarly, the second request
receives the deadline dz = ~2 + e = 21, but it is not
serviced immediately, since at time t = 13 there is
an active periodic task with a shorter deadline (18).
Finally, the third aperiodic request, arrived at time
t = 18, receives the deadline d3 = max(rs, da) + @ =

21+ & = 25 and is serviced at time t = 22.
To ‘show that full processor utilization can be

achieved with a TB server, too, we have first proved
that the aperiodic processor utilization does not actu-
ally exceeds US.

Lemma 1 In each interval of time [tl,tz], if C,,,is
the total ezecution time demanded by aperiodic re-
quests arrived at tl or later and served with deadlines

less than OT equal to t2, then

Cape I (t2 - tips.

Now the following Theorem holds.

Theorem 2 Given a set of n periodic tasks with pro-

cessor utilization Up and a TB server with processor

utilization Us, the whole set is schedulable if and only
if

UP + us L 1.

3.2 Implementation Complexity

The implementation of the TB server is the sim-
plest among those seen so far. In order to correctly
assign the deadline to the new issued request, we only
need to keep track of the deadline assigned to the last
aperiodic request (dk_1). Then, the request can be
queued into the ready queue and treated by EDF as
any other periodic instance. Hence, the overhead is
only due to the increased length of the ready queue
if several aperiodic requests are pending at the same
time. However, this problem can be solved by manag-
ing a separate FIFO queue for the aperiodic requests,
and inserting only the first one into the ready queue.
In this way the overall overhead is practically negligi-
ble.

4 The EDL Algorithm

The Total Bandwidth algorithm is able to achieve
good aperiodic response times with extreme simplicity.
Still we could desire a better performance if we agree
to pay something more. For example, looking at the
schedule in Figure 2, we could argue that the second
and the third aperiodic requests may be served as soon
as they arrive, without compromising the schedulabil-
ity of the system. The reason for this is that, when
the requests arrive, the active periodic instances have
enough effective laxity (i.e., the interval between the
completion time and the deadline) to be safely pre-
empted. The main idea of the EDL algorithm is to
take advantage of these laxities.

4.1 Definition of the EDL Server

The definition of the EDL server makes use of some
results presented by Chetto and Chetto in [4]. In this

. .

. . .
. ..t..i...i...i...i...i...t..i...i...i...~...~~..~...~...~...~...~...~~..~...~...~...~...~...~..

Figure 3: Availability function under EDL.

paper, two different implementations of EDF, namely
EDS and EDL, are studied. Under EDS the active
tasks are processed as soon as possible, while under
EDL they are processed as late as possible. An ac-
curate characterixation of the idle times produced by
the two algorithms is given. Moreover, a formal proof
of the optimality, in the sense that it guarantees the
maximum idle time in a given interval, is stated for
EDL. In the original paper, this result is used to build
an acceptance test for sporadic tasks (i.e., aperiodics
with hard deadlines) entering the system, while here
it is used to build an optimal server mechanism for
soft aperiodic activities.

Let us introduce the terminology used by the au-
thors in [4]. With fy” they denote the availability
function

fat) = {
1 if the processor is idle at t
0 otherwise,

defined with respect to a task set Y and a scheduling
algorithm X. The function f;DL, with ,7 = {ri, +2}, is
depicted in Figure 3. The integral of ff on an inter&
of time [ti, tz] is denoted by n$(tl, ta): it gives the
total idle time in the specified interval.

The result of optimality addressed above is stated
in Theorem 2 of [4], which we recall here.

Theorem S Let A be any aperiodic task set and X
any preemptive scheduling algorithm. For any instant

fPjDL(O, t) > a,x(o,t).
”

This result lets us build an optimal server using the
idle times of an EDL scheduler. In particular, given
the periodic task set, the function f$, which is pe-
riodic with hiperpetiod Ii = lcm(Z’r,. , . ,Tn), can
be represented by means of two vectors. The first,
&=(eo,ei,..., e,,), represents the times at which idle
times occur, while the second, 2)’ = (A& Ai, . . . , A;),

Figure 4: Idle times under EDL.

Figure 5: Example of schedule produced with an EDL
server.

represents the lengths of these idle times. The two vec-
tors for the example of Figure 3 are shown in Figure 4
(note that we can have idle times only after the arrival
time of a periodic task instance).

The EDL server mechanism is based on the fol-
lowing idea: the idle times of an EDL scheduler are
used to schedule aperiodic requests as soon as pos-
sible, postponing the execution of periodic activities,
similarly to the effect of the “Slack Stealer” of [8].
The optimality stated in Theorem 3 will give us the
optimality of the server built with this idea.

In particular, when there are no aperiodic activities
in the system, the periodic tasks are scheduled accord-
ing to the EDF algorithm. Whenever a new aperiodic
request enters the system (and no previous aperiodic is
still active) the set .7(t) of the current active periodic
tasks, plus the future periodic instances, is considered.
The idle times of an EDL scheduler applied to .7(t),
that is, $pt”, are then computed and consequently
used to sche a ule the current aperiodic requests. See
Figure 5 for an example. Note that the response time
of the aperiodic request is optimal.

The procedure to recompute at each new arrival the
idle times of EDL applied to ,7(t) is described in [4]
and is not reported here. The worst case complexity of
the algorithm, which is O(Nn), where N is the number
of distinct periodic requests that occur in [0, H[, and
n is the number of periodic tasks, is relatively high
and can give the algorithm little practical interest. As
for the “Slack Stealer”, the EDL server will be used
to provide a lower bound to the aperiodic response
times, and to build a nearly optimal implementable

6

algorithm, described in the next section.

4.2 EDL Server Properties

The analysis of the EDL server schedulability is
quite straightforward. In fact, the server allocates to
the aperiodic activities only the idle times of a partic-
ular EDF schedule, without compromising the time-
liness of the periodic tasks. This is more precisely
stated in the following Theorem.

Theorem 4 Given a set of n periodic tasks with
processor uti&aZion up and the corresponding EDL
server (the behaviour of the server strictly depends on

dhe characlerisiics of the periodic task set), the whole

set is schedulable if and only if

(the server automatically allocales 2he bandwidth 1 -
Up to aperiodic requests). cl

The property of optimality addressed above, that is,
the minimization of the response times of the aperiodic
requests, is stated in the following Lemma.

Lemma 2 Let X be any on-line preemptive algo-

rithm, .7 a periodic iask set, and J an aperiodic IV-

quest. I.c;,~~l(J is the completion time of J when)
,7 u {J} is scheduled by X, then

cl

5 The Improved Priority Exchange Al-
gorit hm

Although optimal, the algorithm described in the
previous section has too much overhead to be consid-
ered practical. However, its main idea can be use-
fully adopted to develop an implementable algorithm,
still maintaining a nearly optimal behaviour, as shown
later in the discussion of the simulations.

What makes the EDL server not practical is the
complexity of computing the idle times at each new
aperiodic arrival. This computation must be done
each time in order to take into account the periodic
instances partially executed or already completed at
the time of arrival.

We can avoid the heavy idle time computation us-
ing the mechanism of priority exchanges. With this
mechanism, in fact, the system can easily keep track

if j i i j i i ji j i) j i j j,{) I j 1 /i*
__.i “‘~“‘~“.~“‘~“‘~“‘:“‘:“‘:“‘~ “‘~“.~“‘~...~..‘~...~...~...~...~ ..““‘~“...“..“........ :::::::::::::::::: i : ; j i f

Figure 6: Improved Priority Exchange server example.

of the time advanced to periodic tasks and possibly
reclaim it at the right priority level. The idle times of
the EDL algorithm can be precomputed off-line. The
server can use them to schedule aperiodic requests,
when there are any, or to advance the execution of pe-
riodic tasks. In the latter case the idle time advanced
can be saved as aperiodic capacity at the priority lev-
els of the periodic tasks executed.

5.1 Definition of the IPE Server

To obtain the Improved Priority Exchange (IPE)
algorithm, we modify the DPE server using the idle
times of an EDL scheduler. First, we obtain a far more
efficient replenishment policy for the server. Second,
the resulting server is no longer periodic and it can
always run at the highest priority in the system.

The IPE server is thus defined in the following way:

the IPE server has an aperiodic capacity, initially
set to 0;

at each instant t = ei + kH, with 0 5 i 5 p

and k > 0, a replenishment of Af units of time is
scheduled for the server capacity, that is, at time
t = eo the server will receive A: units of time
(the two vectors & and 2)” have been defined in
the previous section);

the server priority is always the highest in the
system, regardless of any other deadline;

all other rules of IPE (aperiodic requests and pe-
riodic instances executions, exchange and con-
sumption of capacities) are the same as for a DPE
server.

The same task set of Figure 5 is scheduled with an IPE
server in Figure 6. Note that the server replenishments
are set according to the function fFDL, illustrated in
Figure 3.

The IPE schedulability is stated in the following
Theorem.

Theorem 5 Given a set of n periodic tasks with pro-
censor utilization Up and the corresponding IPE server
(the parametera of the server depend on the periodic
task set), the whole set is schedulabh if and only if

UP 5 1

(the server automatically allocatea the bandwidth 1 -
Up to aperiodic requests). 0

The reclaiming of unused periodic execution time
can be done in the same way as for the DPE server.
When a periodic task completes, its spare time is
added to the corresponding aperiodic capacity. Again,
this behaviour does not affect the schedulability of the
system. The reason is of course the same as for the
DPE server.

5.2 Implementation Complexity

As for the resource reclaiming, even the implemen-
tation complexity of IPE is similar to that of any other
DPE server, at least from the time point of you. The
two vectors & and 2)’ are in fact precomputed before
the system is run. The replenishments of the server ca-
pacity are no longer periodic, but this does not change
the complexity. Finally, all the rest is perfectly the
same, hence even the consideration on the implemen-
tation complexity are comparable.

What can change dramatically is the memory re-
quirement. If the periods of periodic tasks are not
harmonically related, we could have a huge hiperperiod
H=lcm(Ti,..., TR), which would mean a great mem-
ory occupancy to store the two vectors E and V’, since
the memory occupancy is O(N), where N is the num-
ber of distinct periodic requests that occur in [0, H[.

6 Performance Results

DPE, TBS, EDL and IPE algorithms have been
simulated to compare the average response times of
soft aperiodic tasks with respect to the response times
obtained with background scheduling. This form of
aperiodic scheduling is the simplest possible: the ape-
riodic tasks are executed only when the processor
would be otherwise idle, that is, no periodic task in-
stances are ready to run.

For completeness, also a Polling server and a dy-
namic version of the Sporadic Server (DSS) [14, 151
have been compared with the proposed algorithms.

In all simulations, a set of ten periodic tasks with
periods ranging from 100 and 1000 was chosen. Three
periodic loads were simulated, by setting the processor

utilization factor Up at 40%, 65% and 90%, referred in
the following as low, medium and high periodic load,
respectively.

The aperiodic load for these simulations was var-
ied across the range of proeessor utilization unused by
the periodic tasks. The interarrival times (with av-
erage T,) for the aperiodic tasks were modeled using
a Poisson arrival pattern, whereas the aperiodic ser-
vice times (with average T,) were modeled using an
exponential distribution.

Where applicable, the processor utilization of the
servers was set to all the utilization left by the periodic
tasks, that is, US = 1 -Up. The period of the periodic
servers, namely Polling, DPE and DSS, was set equal
to the average aperiodic interarrival time (T,) and,
consequently, the capacity was set to CS = T, US.

Unless otherwise stated, the data plotted for each
algorithm represent the ratio of the average aperiodic
response time relative to the response time of back-
ground aperiodic service. The average is computed
over ten simulations, in which a total of one hun-
dred thousand aperiodic requests were generated. In
this way, an average response time equivalent to back-
ground service has a value of 1.0 on all the graphs.
Hence, a value less than 1.0 corresponds to an im-
provement in the average aperiodic response time over
background service. The lower the response time
curve lies on these graphs, the better the algorithm
is for improving aperiodic responsiveness.

6.1 Experiment 1: IPE vs. EDL

In the first experiment, we have compared the per-
formance of our IPE algorithm versus the optimal
EDL server mechanism. The graph shown in Fig-
ure 7 corresponds to a high periodic load. The ape-
riodic load was generated using a mean interarrival
time T, = 100 and varying the average aperiodic ser-
vice time T, so that the total load covered, roughly,
the range from U, to the full processor utilization.

As can be clearly seen from the graph, the max-
imum difference between the performance of the two
algorithms is less than 0.2%, i.e., it is so small that can
be reasonably considered negligible for any practical
application.

Although IPE and EDL have very similar perfor-
mances, they differ significantly in their implementa-
tion complexity. As mentioned in previous sections,
the EDL algorithm needs to recompute the server pa-
rameters quite frequently (namely, when an aperiodic
request enters the system and all previous aperiodics
have been completely serviced). This overhead can
be too expensive in terms of cpu time to use the algo-

8

Figure 7: Comparison between IPE and EDL server.

rithm in practical applications. On the other hand, for
the IPE algorithm we only have to compute off-line
the parameters of the server. Then, at run-time, as-
suming we have enough memory, the implementation
complexity is the same as for a DPE server, which is
quite reasonable.

In summary, IPE has nearly the same performance
of EDL, but with much less overhead. For this rea-
son, the EDL server performance is not reported in all
subsequent simulations. Moreover, the performance of
the IPE server will be the reference in the following
experiments.

6.2 Experiment 2: Response Time vs.
Aperiodic Load

In the second experiment, we tested the perfor-
mance of all algorithms as a function of the aperiodic
load. The load was varied by changing the average
aperiodic service time, while the average interarrival
time was set at the value of T, = 100.

Figure 8 presents the results of these simulations.
In this figure, three graphs are presented, which cor-
respond to the different periodic loads simulated, low,
medium and high respectively. In each graph, the
average aperiodic response time of each algorithm is
plotted with respect to that of background service as
a function of the mean aperiodic load Uclpe = k.

As can be seen from each graph, the TBS and IPE
algorithms can provide a significant reduction in aver-
age aperiodic response time compared to background
or polling aperiodic service, whereas the performance
of the DPE and DSS algorithms depends on the ape-
riodic load. For low aperiodic load, DPE and DSS
perform as well as TBS and IPE, but as the aperiodic
load increases their performance tends to be similar to

Figure 8: Algorithms performance with different pro-
cessor loads.

9

erage response time of each algorithm is represented
as a function of the parameter A, which ranges from
0 to 0.5. The case A = 0 corresponds to the situation
in which the actual execution times are equal to the
worst case ones. In this particular situation the result
is equivalent to that shown in a previous experiment.

As soon as A becomes greater than rero, that is,
the actual execution times become less than the worst
case ones, the performance of the DPE server tends to
be much better, and also tends to approach the perfor-
mance of the TB server. This behaviour is confirmed
for all other values of A, thus proving the effectiveness
of the reclaiming technique used in the DPE and IPE
algorithms.

Figure 9: Response times vs. unused computation
times.

that one shown by the Polling server.
Note that, in all graphs, TBS and IPE have about

the same responsiveness when the aperiodic load is
low, and they exhibit a slightly different behaviour for
heavy aperiodic loads.

6.3 Experiment 3: Response Time vs.
Unused Periodic Task Computation
Time

The goal of this experiment was to verify the ef-
fectiveness of the resource reclaiming technique, de-
scribed in Section 2.2, which can be used in the algo-
rithms DPE and IPE. In order to do this, we have com-
pared the performance of the five algorithms (Polling,
DPE, DSS, TBS and IPE) on a number of task sets,
in which the actual execution times of periodic tasks
were less than the worst case ones. The estimated pe-
riodic load, computed using the worst case execution
times, was set to 65%. The mean interarrival time
of the aperiodic requests was set to 100 units, while
the mean aperiodic service time was set to 25 units,
thus giving a total estimated processor load of 90%.
The actual execution time cek,j of the ith instance of
the ith periodic task was generated using the following
formula:

In this paper we have introduced five novel on-line
scheduling algorithms for real-time systems with dy-
namic priorities. Namely, all algorithms exploit the
well known Earliest Deadline First policy to deal with
both soft aperiodic and hard periodic tasks. All al-
gorithms have been characterised in terms of schedu-
lability and implementation complexity. For two of
them, DPE and IPE, a simple resource reclaiming
technique has been designed and proved to be effec-
tive. Finally, extensive comparisons have been carried
out in different experiments.

ae$,j = Ci * rnd(1 - 2A, l),

The experimental simulations have established
that, from a performance point of view, IPE and EDL
show the best results. Although optimal, EDL is far
from being reasonably practical, due to the overall
complexity. On the other hand, IPE is able to achieve
a comparable performance with much less computa-
tional overhead. Both algorithms may have significant
memory demands when the periods of the periodic
tasks are not harmonically related.

where Ci is the worst case execution time of the task,
rnd(a, b) is a function that returns a random number
in the interval [o, 51, using a uniform distribution, and

the parameter A, which is
C;-E[a&, ci ‘l, represents the

average ratio of the unused computation times.

The Total Bandwidth algorithm has shown a very
good performance, sometimes comparable to that of
the nearly optimal of IPE. Observing that its im-
plementation complexity is among the simplest, one
could consider this to be a good candidate for practi-
cal systems.

The result of the simulation can be seen in the Even though a bit more complex, the DPE and the
graph shown in Figure 9. In the vertical axis the av- DSS algorithms show slightly worse performance, al-

From the graph, we can see that the TBS algorithm
shows a good behaviour, too, although no explicit re-
claiming has been designed for it. Finally, also the
Polling and the Sporadic servers show good improve-
ments, due to the lower actual periodic load. However,
their performance is always significantly worse, com-
pared to the others.

7 Discussion and Conclusions

10

though they both provide better responsiveness than
the Polling server and the naive background service.

With this work we have covered a wide spectrum of
algorithms dealing with aperiodic service. Consider-
ing also other works in the literature, the real-time de-
signer that wishes to build a system with dynamic pri-
orities should now have a sufficient number of choices
for designing an efficient aperiodic service mechanism.
In particular, in all those applications in which the
periodic load is fixed, the aperiodic service algorithm
can be chosen to balance efficiency against complexity.

As future work, we are considering to use the algo-
rithms presented in this paper as a basis for handling
hard aperiodic tasks. The main goal will be to build
a uniform solution in which hard aperiodic tasks can
be dynamically guaranteed [2], while average response
times of soft aperiodic tasks can be predicted with
reasonable accuracy.

References

111

PI

PI

PI

PI

PI

171

T.P. Baker, “Stack-Based Scheduling of Real-
Time Processes,” The Journal of Real-Time Sys-
tems 3(l), 67-100, 1991.

G. Buttazzo and J. Stankovic, URED: A Ro-
bust Earliest Deadline Scheduling Algorithm,”
PTOC. of 3rd International Workshop on Respon-
sive Computing Systems, Austin, 1993.

M. Chen and K. Lin, “Dynamic Priority Ceilings:
A Concurrency Control Protocol for Real-Time
Systems,” The Journal of Real-Time Systems, 2,
1990.

H. Chetto and M. Chetto, “Some Results of the
Earliest Deadline Scheduling Algorithm,” IEEE
Trans. on Software Engineering, 15(10), 1261-
1269, 1989.

H. Chetto, M. Silly, T. Bouchentouf, “Dynamic
Scheduling of Real-Time Tasks under Precedence
Constraints,” The Journal of Real-Time Systema
2, 181-194, 1990.

R.I. Davis, K.W. Tindell, A. Burns, “Scheduling
Slack Time in Fixed Priority Pre-emptive Sys-
tems,” Proc. of Real-Time Systems Symposium,
222-231, 1993.

T.M. Ghazalie and T.P. Baker, “Aperiodic
Servers In A Deadline Scheduling Environment,”
The Journal of Real-Time Systems, to appear.

PI

PI

PO1

1111

PI

WI

PI

P51

J.P. Lehoczky and S. Ramos-Thuel, “An Optimal
Algorithm for Scheduling Soft-Aperiodic Tasks
in Fixed-Priority Preemptive Systems,” Proc. of
Real-Time Syatema Symposium, 110-123, 1992.

J.P. Lehoczky, L. Sha, Y. Ding, “The Rate Mono-
tonic Scheduling Algorithm: Exact Characteriza-
tion and Average Case Behaviour,” Proc. of Real-
Time Systems Symposium, 166-1’71, 1989.

J.P. Lehoczky, L. Sha, J.K. Strosnider, “En-
hanced Aperiodic Responsiveness in Hard Real-
Time Environments,” Proc. of Real-Time Sys-
tems Symposium, 261-270, 1987.

C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-
Time Environment,” Journal of the ACM 20(l),
40-61, 1973.

A.K. Mok, “Fundamental Design Problems of
Distributed Systems for the Hard-Real-Time En-
vironment,” Ph.D. Dissertation, MIT, 1983.

S. Ramos-Thuel and J.P. Lehoczky, “On-line
Scheduling of Hard Deadline Aperiodic Tasks
in Fixed-Priority Systems,” Proc. of Real-Time
Systems Symposium, 160-1’71, 1993.

B. Sprunt, L. Sha, J. Lehoczky, “Aperiodic Task
Scheduling for Hard-Real-Time Systems,” The
Journal of Real-Time Systems 1, 27-60, 1989.

M. Spuri and G. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,” Technical
Report ARTS Lab TR 94-06, Scuola Superiore S.
Anna, Pisa, Italy, April 1994.

11

