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Resources & Resource Access Control
(Chapter 8 of Liu)

◆ Until now, we have assumed that tasks are
independent.

◆ We now remove this restriction.

◆ We first consider how to adapt the analysis
discussed previously when tasks access shared
resources.

◆ Later, in our discussion of distributed systems,
we will consider tasks that have precedence
constraints.
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Shared Resources

◆ We continue to consider single-processor
systems.

◆ We add to the model a set of ρ serially reusable
resources R1, R2, …, Rρ, where there are vi

units of resource Ri.
» Examples of resources:

• Binary semaphore, for which there is one unit.

• Counting semaphore, for which there may be many units.

• Reader/writer locks.

• Printer.

• Remote server.

4
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Locks

◆ A job that wants n units of resource R executes a
lock request, denoted L(R, n).

◆ It unlocks the resource by executing a
corresponding unlock request, denoted U(R, n).

◆ A matching lock/unlock pair is a critical section.

◆ A critical section corresponding to n units of
resource R, with an execution cost of e, will be
denoted [R, n; e].  If n = 1, then this is simplified
to [R; e].
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Locks (Continued)

◆ Locks can be nested.

◆ We will use notation like this:
» [R1; 14 [R4, 3; 9 [R5, 4; 3]]]

◆ In our analysis, we will be mostly interested in
outermost critical sections.

◆ Note: For simplicity, we only have one kind of
lock request.
» So, for example, we can’t actually distinguish

between reader locks and writer locks.

6
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Conflicts

◆ Two jobs have a resource conflict if some of
the resources they require are the same.
» Note that if we had reader/writer locks, then notion

of a “conflict” would be a little more complicated.

◆ Two jobs contend for a resource when one job
requests a resource that the other job already
has.

◆ The scheduler will always deny a lock request if
there are not enough free units of the resource to
satisfy the request.
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Example

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

= access of single-unit resource R
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Timing Anomalies

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be timing anomalies.

Example: Let us reduce J3’s critical section execution from 4 time
units to 2.5.  Then J1 misses its deadline!
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Priority Inversions

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be priority inversions.

Example:
priority inversion

10
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Deadlocks

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, deadlocks may be a problem.

Example: J1 accesses green, then red (nested).  J3 accesses red, then
green (nested).

can’t lock green!

What’s a very simple way to fix this problem?
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Wait-for Graphs

We will specify blocking relationships using a wait-for graph.

Example:

J2 R,1 J3

J1

J3 has locked the single
unit of resource R and J2

is waiting to lock it.

Question: Can we use a wait-for graph to determine if there
is a deadlock?

12
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Specifying Resource Requirements
Resource requirements will be specified like this:

J2

J3

J1

R 1

2

4

4

J1 requires the single-unit
resource R for 2 time units.

T1

T2

T3

T4

R1

R2

5

1

(2; 3)

1

2

[R2; 8 [R1, 4; 1][R1, 1; 5]]

Simple resource requirements are
shown on edges.  Complicated ones
by the corresponding task.

Each job of T1 requires
2 units of R1 for at most
3 time units and one unit
of R2 for at most 1 time
unit.
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Resource Access Control Protocols

◆ We now consider several protocols for allocating
resources that control priority inversions and/or
deadlocks.

◆ From now on, the term “critical section” is taken
to mean “outermost critical section” unless
specified otherwise.

14
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Nonpreemptive Critical Section Protocol

◆ The simplest protocol: just execute each critical
section nonpreemptively.

◆ If tasks are indexed by priority (or relative deadline
in the case of EDF), then task Ti has a blocking
term equal to maxi+1 ≤ k ≤ n ck, where ck is the
execution cost of the longest critical section of Tk.

• We’ve talked before about how to incorporate such blocking
terms into scheduling analysis.

◆ Advantage: Very simple.

◆ Disadvantage: Ti’s blocking term may depend on
tasks that it doesn’t even have conflicts with.
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The Priority Inheritance Protocol
(Sha, Rajkumar, Lehoczky)

Observation: In a system with lock-based resources, priority inversion
cannot be eliminated.

Thus, our only choice is to limit their duration.  Consider again this
example:

0 2 4 6 8 10 12 14 16 18

J3

J2

J1
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The Priority Inheritance Protocol

The problem here is not the low-priority job J3  it’s the medium
priority job J2!

We must find a way to prevent a medium-priority job like this from
lengthening the duration of a priority inversion.

0 2 4 6 8 10 12 14 16 18

J3

J2

J1
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The Priority Inheritance Protocol

Priority Inheritance Protocol: When a low-priority job blocks a high-
priority job, it inherits the high-priority job’s priority.

This prevents an untimely preemption by a medium-priority job.

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

executed at J1’s priority

18
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PIP Definition
Each job Jk has an assigned priority (e.g., RM priority) and a current priority πk(t).

1. Scheduling Rule:  Ready jobs are scheduled on the processor preemptively in a
    priority-driven manner according to their current priorities.  At its release time t,
    the current priority of every job is equal to its assigned priority.  The job remains
    at this priority except under the condition stated in rule 3.

2. Allocation Rule:  When a job J requests a resource R at time t,
(a) if R is free, R is allocated to J until J releases it, and
(b) if R is not free, the request is denied and J is blocked.

3. Priority-Inheritance Rule:  When the requesting job J becomes blocked, the job
    Jl that blocks J inherits the current priority of J. The job Jl executes at its inherited
    priority until it releases R (or until it inherits an even higher priority); the priority
    of Jl returns to its priority πl(t′) at the time t′ when it acquires the resource R.
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A More Complicated Example

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5 J5

J4

J2 J1

J1

J1 J1 J1

J1

J2

This means this portion of the critical section executes at J2’s priority.

(This is slightly different from the example in Figure 8-8 in the book.)

J5 J1

20
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Properties of the PIP

◆ We have two kinds of blocking with the PIP: direct
blocking and inheritance blocking.

• In the previous example, J2 is directly blocked by J5 over the
interval [6,9] and is inheritance blocked by J4 over the
interval [11,15].

◆ Jobs can transitively block each other.
• At time 11.5, J5 blocks J4 and J4 blocks J1.

◆ The PIP doesn’t prevent deadlock.

◆ A jobs that requires v resources and conflicts with k lower
priority jobs can be blocked for min(v,k) times, each for
the duration of an outermost CS.

• It’s possible to do much better.
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The Priority-Ceiling Protocol
(Sha, Rajkumar, Lehoczky)

◆ Two key assumptions:
• The assigned priorities of all jobs are fixed (as before).

• The resources required by all jobs are know a priori before the
execution of any job begins.

◆ Definition: The priority ceiling of any resource R is the
highest priority of all the jobs that require R, and is denoted
Π(R).

◆ Definition: The current priority ceiling Π′(R) of the
system is equal to the highest priority ceiling of the
resources currently in use, or Ω if no resources are currently
in use (Ω is a priority lower than any real priority).

• Note: I’ve used ′ instead of ^ due to PowerPoint limitations.
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PCP Definition
1. Scheduling Rule:

(a) At its release time t, the current priority π(t) of every job J equals its assigned priority.
     The job remains at this priority except under the conditions of rule 3.

(b) Every ready job J is scheduled preemptively and in a priority-driven manner at its
     current priority π(t).

2. Allocation Rule:  Whenever a job J requests a resource R at time t, one of the following
     two conditions occurs:

(a) R is held by another job.  J’s request fails and J becomes blocked.

(b) R is free.
(i) If J’s priority π(t) is higher than the current priority ceiling Π′(t), R is allocated to J.
(ii) If J’s priority π(t) is not higher than the ceiling Π′(t), R is allocated to J only if J is
      the job holding the resource(s) whose priority ceiling equals Π′(t); otherwise, J’s
      request is denied and J becomes blocked.

3. Priority-Inheritance Rule:  When J becomes blocked, the job Jl that blocks J inherits the
    current priority π(t) of J.  Jl executes at its inherited priority until it releases every resource
    whose priority ceiling is ≥ π(t) (or until it inherits an even higher priority); at that time, the
    priority of Jl returns to its priority π(t′) at the time t′ when it was granted the resources.
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Example

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5 J5

J1

J1 J1 J1

J1

J2

(This is the PCP counterpart of our “complicated” PIP example.)

J5 J4J4 J2
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Properties of the PCP

◆ The PCP is not greedy.
• For example, J4 in the example is prevented from locking

the green object, even though it is free.

◆ We now have three kinds of blocking:
» Direct blocking (as before).

• For example, J5 directly blocks J2 at time 6.

» Priority-inheritance blocking (also as before).
• This doesn’t occur in our example.

» Priority-ceiling blocking (this is new).
• J4 suffers a priority-ceiling blocking at time 3.
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Two Theorems

Theorem 8-1:  When the resource accesses of a system of
preemptive, priority-driven jobs on one processor are controlled
by the PCP, deadlock can never occur.

Theorem 8-2: When the resource accesses of a system of
preemptive, priority-driven jobs on one processor are controlled
by the PCP, a job can be blocked for at most the duration of one
critical section.

26
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Deadlock Avoidance
With the PIP, deadlock could occur if nested critical sections are
invoked in an inconsistent order.  Here’s an example we looked at earlier.

Example: J1 accesses green, then red (nested).  J3 accesses red, then
green (nested).

The PCP would prevent J1 from locking green.  Why?

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

can’t lock green!
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Blocking Term
Suppose J1 blocks when accessing the green critical section and later
blocks when accessing the red critical section.

0 2 4 6 8 10 12 14 16 18

J1

blocks on green

28
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Blocking Term
For J1 block on green, some lower-priority job must have held the
lock on green when J1 began to execute.

0 2 4 6 8 10 12 14 16 18

J1

blocks on green

J2
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Blocking Term
For J1 to later block on red, some lower-priority job must have held
the lock on red when J1 began executing.

0 2 4 6 8 10 12 14 16 18

J1

blocks on green

J2

blocks on red

J3
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Blocking Term
Whichever way J2 and J3 are prioritized (here, J2 has priority over J3),
we have a contradiction.  Why?

0 2 4 6 8 10 12 14 16 18

J1

blocks on green

J2

blocks on red

J3
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Some Comments on the PCP

◆ When computing blocking terms, it is important
to carefully consider all three kinds of blockings
(direct, inheritance, ceiling).
» See the book for an example where this is done

systematically (Figure 8-15).

◆ With the PCP, we have to pay for extra two
context switches per blocking term.
» Such context switching costs can really add up in a

large system.

» This is the motivation for the Stack Resource Policy
(SRP), described next.

32
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Stack-based Resource Sharing

◆ So far, we have assumed that each task has its
own runtime stack.

◆ In many systems, tasks can share a run-time
task.

◆ This can lead to memory savings because there
is less fragmentation.
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Stack-based Resource Sharing (Cont’d)

◆ If tasks share a runtime stack, we clearly cannot
allow a schedule like the following.  (Why?)

◆ We must delay the execution of each job until
we are sure all the resources it needs are
available.

J1

J2
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Stack Resource Policy
(Baker)

0. Update of the Current Ceiling: Whenever all the resources are free,
    the ceiling of the system is Ω.  The ceiling Π′(t) is updated each
    time a resource is allocated or freed.

1. Scheduling Rule: After a job is released, it is blocked from starting
    executing until its assigned priority is higher than the current
    ceiling Π′(t) of the system.  At all times, jobs that are not blocked
    are scheduled on the processor in priority-driven, preemptive manner
    according to their assigned priorities.

2. Allocation Rule: Whenever a job requests a resource, it is allocated
    the resource.

Note: Can be implemented using a single runtime stack, but this isn’t
required.
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Example

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

(This is the SRP counterpart of our “complicated” example.)

Notice how J4 incurs its blocking term “up
front,” before it actually starts to execute.
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Properties of the SRP

◆ No job is ever blocked once its execution
begins.
» Thus, there can never be any deadlock.

◆ The blocking term calculation is the same as
with the PCP.
» Convince yourself of this!

» One difference, though: With the SRP, a job is
blocked only before it begins execution, so extra
context switches due to blockings are avoided.
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Scheduling, Revisited
We have already talked about how to incorporate blocking terms into
scheduling conditions.

For example, with TDA and generalized TDA, we changed our time-
demand function by adding a blocking term.  For TDA, we got this:

For EDF-scheduled systems, we stated the following utilization-based
condition:
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A Closer Look at Dynamic-Priority
Systems

◆ It turns out that this EDF condition is not very tight.

◆ We now cover a paper by Jeffay that presents a
much tighter condition.
» Although it may not seem like it on first reading, Jeffay’s

paper basically reinvents the SRP, but for dynamic-
priority systems.

» However, the scheduling analysis for dynamic-priority
systems given by Jeffay is much better than that found
elsewhere.
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Scheduling Sporadic Tasks with Shared
Resources

(Jeffay)

◆ In the model of this paper, each task Ti is
partitioned into ni distinct phases.

» In each phase, either no resource is required or
exactly one resource is required.

» If resource Rk is required by Ti’s jth phase, then we
denote this by rij = k, where 1 ≤ k ≤ m.

» If no resource is required, then rij = 0.

40
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Single-Phase Systems

In a single-phase system, each task is either a critical section that
accesses some resource, or a non-critical section that accesses
no resource.

Notation:  Each task Ti will be denoted by (si, (ci, Ci, ri), pi) where:
• si is its release time;
• ci is its minimum execution cost;
• Ci is its maximum execution cost;
• ri indicates which (if any) resource is accessed;
• pi is its period.

Definition: We let Pi denote the period of the “shortest” task that
requires resource Ri, i.e., Pi = min1 ≤ j ≤ n (pj | rj = i).
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Necessary Scheduling Condition

Theorem 3.2: Let T = {T1, T2, …, Tn} be a system of single-phase,
sporadic tasks with relative deadlines equal to their periods such that
the tasks in T are indexed in non-decreasing order by period (i.e.,
if i < j, then pi ≤ pj).  If T is schedulable on a single processor, then:
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Compare this to the feasibility condition we had for nonpreemptive
EDF, which is repeated on the following slide.
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Non-preemptive EDF, Revisited

Theorem : Let T = {T1, T2, …, Tn} be a system of independent,
periodic tasks with relative deadlines equal to their periods such that
the tasks in T are indexed in non-decreasing order by period (i.e.,
if i < j, then pi ≤ pj).  T can be scheduled by the non-preemptive EDF
algorithm if:
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Remember, we showed this condition is also necessary for sporadic
tasks.
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Proof Sketch of Theorem 3.2

Given our previous discussion of nonpreemptive EDF, Theorem 3.2
should be pretty obvious.

Clearly, if T is schedulable, total utilization must be at most one, i.e.,
condition (1) must hold.

Condition (2) accounts for the worst-case blocking that can be
experienced by each task Ti.

Remember, with nonpreemptive EDF, the “worst-case” pattern of
job releases occurs when a job of some Ti begins executing
(non-preemptively!) one time unit before some tasks with smaller
periods begin releasing some jobs.

44
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Proof Sketch (Continued)
Here’s an illustration:

T1

T2

T3

Ti

Moreover, with sporadic tasks, such releases are always possible, and
thus if T is schedulable, then it is necessary to ensure no deadline is
missed in the face of job releases like this.

In a single-phase system, we have the same kind of necessary condition,
but now a task may only be blocked by a task that accesses a common
resource.
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EDF-DDM

◆ Our goal now is to define a scheduling algorithm for which
the conditions of Theorem 3.2 are necessary.

◆ Since EDF is optimal in the absence of resources, it makes
sense to look at some variant of EDF.

◆ Remember with the PIP, PCP, and SRP, the idea is to raise a
lower-priority job’s priority when a blocking occurs.

◆ With EDF, raising a priority means temporarily “shrinking”
the job’s deadline.

◆ The resulting scheme is called EDF with dynamic
deadline modification.
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Example
Here’s what can happen without dynamic deadline modification:

T1

T2

T3

Here’s the corresponding schedule with dynamic deadline modification:

T1

T2

T3

0     1      2 … 

0     1      2 … 

Notice that T2
does not
preempt T1 at
time 1.
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EDF/DDM Definition

◆ Let tr be the time when job J of task Ti is
released, and let ts be the time job J starts to
execute.

◆ In the interval [tr, ts), J’s deadline is tr + pi, just
like with EDF.
» This is called J’s initial deadline.

◆ At time ts, J’s deadline is changed to
min(tr + pi, (ts + 1) + Pri

).
» This is called J’s contending deadline.
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Sufficient Condition for EDF/DDM

Theorem 3.4: Let T = {T1, T2, …, Tn} be a system of single-phase,
sporadic tasks with relative deadlines equal to their periods such that
the tasks in T are indexed in non-decreasing order by period (i.e.,
if i < j, then pi ≤ pj).  The EDF/DDM discipline will succeed in
scheduling T if conditions (1) and (2) from Theorem 3.2 hold.

Thus, by Theorem 3.2, (1) and (2) are feasibility conditions.

Not surprisingly, the proof of Theorem 3.4 is very similar to the
corresponding proof we did for nonpreemptive EDF systems.
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Proof of Theorem 3.4
Suppose conditions (1) and (2) hold for T but a deadline is missed.
Let td be the earliest point in time at which a deadline is missed.

There are two cases.

Case 1: No job with an initial deadline after time td is scheduled prior
to time td.  The analysis is just like with preemptive EDF.

As before, let t-1 be the last “idle instant”.   (This is denoted t0 in the
paper, but I’ve used t-1 to be consistent with previous proofs.)

Because a deadline is missed at td, demand over [t-1, td] exceeds
td − t-1.  In addition, this demand is at most ∑j=1,..,n (td − t-1)/pj⋅Cj.

Thus, we have td − t-1 < ∑j=1,..,n (td − t-1)/pj⋅Cj ≤ ∑j=1,..,n [(td − t-1)/pj]⋅Cj.

This implies utilization exceeds one, which contradicts condition (1).
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Proof (Continued)

Case 2: Some job with an initial deadline after time td is scheduled
prior to time td.

Let Ti be the task with the last job with an initial deadline after td that is
scheduled prior to td.  Then, we have the following:

ti td

Time
Ti

Let us bound the processor demand in [ti, td] … (This is where things
start to get a little different from the nonpreemptive EDF proof.)
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Proof (Continued)

Case 2a: Ti’s contending deadline is less than or equal to td.

This means Ti must be a resource requesting task.  We have the
following:

ti td

Time
Ti

The proof for this subcase is very much like Case 2 in the
nonpreemptive EDF proof (we get a contradiction of condition (2)).

contending initial
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Proof (Continued)

◆ Observe the following:

» Other than task Ti, no task with a period greater than
or equal to td − ti executes in the interval [ti, td].
• Such a task would contradict our choice of Ti.

» Other than Ti, no task that executes in [ti, td] could
have been invoked at time ti.

» The processor is fully utilized in [ti, td].
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Proof (Continued)

From these facts, we conclude that demand over [ti, td] is less than or
equal to

Let L = td − ti.  We have pi > L > Pri
.  (Why?)  Also, 

This contradicts condition (2).
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Proof (Continued)

Case 2b: Ti’s contending deadline is greater than td.

This means either Ti doesn’t request any resource or (ti + 1) + Pri
 > td.

We have the following:

ti td

Time
Ti

Ti is preemptable by any job whose period lies with [ti, td].  (Why?)

contending
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Proof (Continued)

Let t-1 > ti be the later of the end of the last idle period in [ti, td] or the
time Ti last stops executing prior to td.

All invocations of tasks occurring prior to t-1 with deadlines less than
or equal to td must have completed executing by t-1. (Why?)

ti td

Time
Ti

As in Case 1, we can show that demand over [t-1, td] exceeds
td − t-1, which implies that condition (1) is violated.

contending

t-1
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Multi-Phase Systems
Notation:  In a multi-phase system, each task Ti is denoted by
(si, (cij, Cij, rij), pi), 1 ≤ i ≤ n, 1 ≤ j ≤ ni, where:

• si is its release time;
• nj is the number of phases in each job of Ti;
• cij is the minimum execution cost of the jth phase;
• Cij is the maximum execution cost of the jth phase;
• rij indicates which (if any) resource is accessed in the jth phase;
• pi is its period.

Definition: We let Prik
 = min1 ≤ j ≤ n (pj | rjl = rik for some l in the range

1 ≤ l ≤ nj).

Definition: The execution cost of Ti is Ei = ∑k = 1,…,ni
 Cik.
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Necessary Scheduling Condition
Theorem 4.1: Let T = {T1, T2, …, Tn} be a system of multi-phase,
sporadic tasks with relative deadlines equal to their periods such that
the tasks in T are indexed in non-decreasing order by period (i.e.,
if i < j, then pi ≤ pj).  If T is schedulable on a single processor, then:
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Ugh!
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EDF/DDM for Multi-phase Systems

◆ Let tr be the time when job J of task Ti is released, and let tsk
be the time job J’s kth phase starts to execute.

◆ In the interval [tr, ts), J’s deadline is tr + pi, just like with
EDF.

◆ At time tsk, J’s deadline is changed to min(tr + pi, (tsk + 1) +
Prik).

◆ When one of J’s phases completes, its deadline immediately
reverts to tr + pi.

◆ Note that this algorithm prevents a job from beginning
execution until all the resources it requires are available,
i.e., this is just a dynamic-priority SRP.
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Sufficient Condition for EDF/DDM

Theorem 4.3: Let T = {T1, T2, …, Tn} be a system of multi-phase,
sporadic tasks with relative deadlines equal to their periods such that
the tasks in T are indexed in non-decreasing order by period (i.e.,
if i < j, then pi ≤ pj).  The EDF/DDM discipline will succeed in
scheduling T if conditions (1) and (2) from Theorem 4.1 hold.

Thus, by Theorem 4.1, (1) and (2) are feasibility conditions for
multi-phase, sporadic task systems.

We will not cover the proofs of Theorems 4.1 and 4.3 in class, but
you should read through them in the paper.
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An Alternative to Critical Sections

◆ Critical sections are often used to implement
software shared objects.
» Example: producer/consumer buffer.

◆ Such objects actually can be implemented without
using critical sections or related mechanisms.

◆ Such shared-object algorithms are called
nonblocking algorithms.

◆ Bottom Line: We can avoid priority inversions
altogether when implementing software shared
objects.
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Nonblocking Algorithms

◆ Two variants:

» Lock-Free:
• Perform operations “optimistically”.

• Retry operations that are interfered with.

» Wait-Free:
• No waiting of any kind:

– No busy-waiting.

– No blocking synchronization constructs.

– No unbounded retries.

◆ Recent research at UNC has shown how to account for
lock-free and wait-free overheads in scheduling analysis.

◆ First, some background …
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type  Qtype = record v: valtype; next:  pointer to Qtype end
shared var  Tail:  pointer to Qtype;
local var  old, new: pointer to Qtype

procedure Enqueue (input: valtype)
     new := (input,  NIL);
    repeat    old := Tail
    until  CAS2(&Tail, &(old->next), old, NIL, new, new) 

Lock-Free Example

Tail

old new

Tail

old new
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Wait-Free Algorithms
(Herlihy’s Helping Scheme)

process q’s
copy

pointer to
shared 
object

process  p’s
copy

process  r’s
copy

“current”
    copy

“announce” array

Can only retry once!
Disadvantage: Copying overhead.

“announce” operation;
retry until done:
      create local copy of the object;
      apply all announced operations
            on local copy;
      attempt to make local copy the
            “current” copy using a
            strong synchronization
            primitive

Algorithm:
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Using Wait-Free Algorithms in Real-
time Systems

◆ On uniprocesors, helping-based algorithms are
not very attractive.
» Only high-priority tasks help lower-priority tasks.

– Similar to priority inversion.

» Such algorithms can have high overhead due to
copying and having to use costly synchronization
primitives.

– Some wait-free algorithms avoid these problems and are useful.

– Example: “Collision avoiding” read/write buffers.

◆ On the other hand, on multiprocessors, wait-free
algorithms may be the best choice.
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Using Lock-Free Objects on Real-time
Uniprocessors

(Anderson, Ramamurthy, Jeffay)

◆ Advantages of Lock-free Objects:
» No priority inversions.

» Lower overhead than helping-based wait-free
objects.

» Overhead is charged to low-priority tasks.

◆ But:
» Access times are potentially unbounded.
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Scheduling with Lock-Free Objects

On a uniprocessor, lock-free retries really aren’t unbounded.

A task fails to update a shared object only if
preempted during its object call.

Low

High

Failed retry-loop Successful retry-loop

Can compute a bound on retries by counting preemptions.
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RM Sufficient Condition

Assume rate-monotonic priority assignment.

Sufficient Scheduling Condition:























≤












+












≤<∃∀ ∑ ∑

=

−

=

i

1j

1i

1j j
j

j
i ts

p

t
e

p

t
::pt0:t ::i

In this condition, s is the time to update a lock-free object (one retry
loop iteration).

We are assuming at this point that all retry loops have the same cost.
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Proof of RM Condition

The proof strategy should be very familiar to you by now.

To Prove: If a task set is not schedulable, then the
sufficient condition does not hold, i.e.,
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Setting Up the Proof…

High

Med

Failed retry-loop Successful  retry-loop

Ti

t-1 ri,k ri,k+1

s

Let the kth job of Ti be the first to miss its deadline.

Let t-1 be the latest “idle instant” before ri,k+1.
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Intuition

the demand placed on the processor by Ti

and higher-priority tasks in [t-1,t) is greater than
the available processor time in [t-1,t).

If a task set is not schedulable, then at all instants t in (t-1,ri,k+1],

Suppose not:
• Case t ∈ (t-1,ri,k]: Contradicts choice of t-1.
• Case t ∈ (ri,k,ri,k+1]: Ti’s deadline at ri,k+1 is not missed. 
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Finishing the Proof ...

For any t in (t-1,ri,k+1], the following holds.

    available processor time in [t-1,t)

<  demand due to Ti and higher-priority jobs in [t-1,t)

=   demand due to job releases of Ti and higher-priority tasks
  + demand due to failed loop tries in Ti and higher-priority tasks

≤   ∑j=1…,i (number of jobs of Tj released in [t-1,t) )·ej

    + ∑j=1…,i-1(number of preemptions Tj can cause in Ti and
                      higher-priority tasks) ·  (cost of failed loop try)
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… Finishing the Proof

Hence, for any t in (t-1,ri,k+1],   
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Replacing t − t-1 by t´ in (0, ri,k+1 − t-1],

∑ ∑
=

−

= 









 ′
+











 ′
<′

i

1j

1i

1j j
j

j

s.
p

t
e

p

t
t



73

Real-Time Systems Resource Sharing -  73Jim Anderson

EDF Sufficient Condition

Assume earliest-deadline-first priority assignment.

Sufficient Condition:

∑
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As before …  To Prove: If a task set T is not schedulable, then
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Setting Up the Proof...

Failed retry-loop Successful retry-loop

Ti

t-1 ri,k ri,k+1

s

Same set-up as before… 
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Intuition

If a task set is not schedulable, then the demand
placed on the processor in [t-1,ri,k+1) by jobs
with deadlines at or before ri,k+1 is greater than
the available processor time in [t-1,ri,k+1]. 

76

Real-Time Systems Resource Sharing -  76Jim Anderson

Finishing the Proof ...

    available processor time in [t-1,ri,k+1]

<  demand due to jobs with deadlines ≤ ri,k+1

=   demand due to releases of those jobs
  + demand due to failed loop tries in those jobs

≤    ∑j=1,…,N [number of jobs of Tj with deadlines at or before
                        ri,k+1 released in [t-1,ri,k+1)] ·ej

     + ∑j=1,…,N (number of preemptions Tj can cause in such
                        jobs) ·  (cost of failed loop try)



77

Real-Time Systems Resource Sharing -  77Jim Anderson

… Finishing the Proof

Hence, 
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Comparison of Lock-Free & Lock-Based

◆ It can be shown analytically that lock-free wins
over lock-based if:
» (lock-free access cost) ≤ (lock-based access cost)/2.

• For many objects, this will be the case, because with a lock-
based implementation, you get one object access for the
price of many (due to all the kernel objects that have to be
accessed).

◆ Breakdown utilization experiments involving
randomly-generated task sets show that lock-free
is likely to win if:
» (lock-free access cost) ≤ (lock-based access cost).



79

Real-Time Systems Resource Sharing -  79Jim Anderson

Better Scheduling Conditions

◆ Previous conditions perform poorly when retry
loop costs vary widely.

◆ Also, they over-count interferences (not every
preemption causes an interference).

◆ Question: How to incorporate different retry
loop costs?

◆ Answer: Use linear programming.
» Can apply linear programming to both RM and EDF

(and also DM).

» We only consider RM here.
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Linear-Programming RM Condition
(Anderson and Ramamurthy)
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w(j) - Number of phases of Tj.
ml

j,v(t) - Number of interferences in Tj’s vth phase due to Tl in an
             interval of length t.
sl

j,v - Cost of one such interference.

Approach: View Ei(t) as a linear expression, where ml
j,v(t) are

the variables.

Maximize Ei(t) subject to some constraints.
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LP RM Condition (Continued)

Example Constraints (the easy ones):

Let Ei´(t) be an upper bound on Ei(t) obtained by linear programming.

RM Condition:
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