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Resource Sharing - 1

Real-Time Systems

Jim Anderson

Resources & Resource Access Control

(Chapter 8 of Liu)

0 Until now, we have assumed that tasks are
independent.

o We now remove this restriction.

0 Wefirst consider how to adapt the analysis
discussed previously when tasks access shared
I esour ces.

0 Later, in our discussion of distributed systems,
we will consider tasks that have precedence
constraints.
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Shared Resources

0 We continue to consider single-processor
systems.

0 We add to the model a set of p serialy reusable
resourcesR;, Ry, ..., R,, where there arg v
units of resource R

» Examples of resour ces:
« Binary semaphore, for which there is one unit.
» Counting semaphore, for which there may be many units
» Reader/writer locks.
* Printer.
* Remote server.
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Locks

0 A job that wants n units of resource R executes a
lock reguest, denoted L (R, n).

0 It unlocks the resource by executing a
corresponding unlock request, denoted U(R, n).

0 A matching lock/unlock pair isacritical section.

0 A critical section corresponding to n units of
resource R, with an execution cost of e, will be
denoted [R, n; €]. If n=1, then thisissimplified
to[R; €.
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L ocks (Continued)

0 Locks can be nested.

0 Wewill use notation like this:
» [Ry; 14 [R,, 3;9[R;, 4; 3]

0 Inour analysis, we will be mostly interested in
outermost critical sections.

0 Note: For smplicity, we only have one kind of
lock request.

» So, for example, we can't actually distinguish
between reader locks and writer locks.
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Conflicts

0 Two jobs have aresour ce conflict if some of
the resources they require are the same.
» Note that if we had reader/writer locks, then notion
of a “conflict” would be a little more complicated.
0 Two jobs contend for a resource when one job
reguests a resource that the other job already
has.
0 The scheduler will always deny alock request if
there are not enough free units of the resource to
satisfy the request.
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Example
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| Il = access of single-unit resource R |

Real-Time Systems

Timing Anomalies

When tasks share resources, there may be timing anomalies.

Example: Let usreduce J;'s critical section execution from 4 time
units to 2.5. Then,;dnisses its deadline!
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Priority Inversions

When tasks share resources, there may be priority inversions.

Example:
priority inversion

\ \ \ \ \ \ \ \ \ |
0 2 4 6 8 10 12 14 16 18
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Deadlocks

When tasks share resources, deadlocks may be a problem.

Example: J, accesses green, then red (nested). J; accessesred, then
green (nested).

y _ em |

3 l |
can't lock green!

3 = |

\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 0 12 14 16 18

What's a very simple way to fix this problem?
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Wait-for Graphs

We will specify blocking relationships using await-for graph.

Example:

®

J; has locked the single
unit of resource R and J,
iswaiting to lock it.

o

© @

Question: Can we use await-for graph to determine if there
is a deadlock?
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Specifying Resource Reguirements

Resource requirements will be specified like this:

Each job of T, requires
2 units of R, for at most
2 3 time units and one unit
of R, for at most 1 time

Q 4 G 1 unit.
: (1)
@/ [Rx 8[Ry, 4; 1][Ry, 1; 5]]

1
2
J, requires the single-unit
resource R for 2 time units. Simple resource requirements are
shown on edges. Complicated ones
by the corresponding task.
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Resource Access Control Protocols

0 We now consider several protocols for allocating
resources that control priority inversions and/or
deadlocks.

0 From now on, the term “critical section” is taken
to mean “outermost critical section” unless
specified otherwise.
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Nonpreemptive Critical Section Protocol

0 The simplest protocol: just execute each critical
section nonpreemptively.

0 If tasks areindexed by priority (or relative deadline
in the case of EDF), then task T; has a blocking
term equal to max;,, . <, G, Where ¢, isthe
execution cost of the longest critical section of T,.

« We've talked before about how to incorporate such blockin
terms into scheduling analysis.

0 Advantage: Very simple.
0 Disadvantage: T;'s blocking term may depend on
tasks that it doesn’t even have conflicts with.
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The Priority Inheritance Protocol

(Sha, Rgjkumar, Lehoczky)

Observation: In asystem with lock-based resources, priority inversion
cannot be eliminated.

Thus, our only choiceisto limit their duration. Consider again this
example:

B = [

3 — |

LEmm —— - |
o 2 4 & & 1 B U 1 18
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The Priority Inheritance Protocol

The problem hereis not the low-priority job J; O it's the medium
priority job J!

We must find a way to prevent a medium-priority job like this from
lengthening the duration of a priority inversion.

B = [

3 — |

LEmm —— - |
o 2 4 & & 1 B U 1 18
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The Priority Inheritance Protocol

Priority Inheritance Protocol: When alow-priority job blocks a high-
priority job, it inherits the high-priority job’s priority.

This prevents an untimely preemption by a medium-priority job.

3 = —— |

3 | —
executed at J,'s priority
L e — |

\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18
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PIP Definition

1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a
priority-driven manner according to their current priorities. Atitsreleasetimet,
the current priority of every job isequal to its assigned priority. The job remains
at this priority except under the condition stated in rule 3.

2. Allocation Rule: When ajob Jrequests aresource R at timet,
(a) if Risfree, Risallocated to Juntil Jreleasesit, and
(b) if Risnot free, the request is denied and Jis blocked.

3. Priority-Inheritance Rule: When the requesting job J becomes blocked, the job
J that blocks Jinherits the current priority of J. The job J executes at its inherited
priority until it releases R (or until it inherits an even higher priority); the priority
of J returnsto its priority mi(t') at the timet' when it acquires the resource R.

Jim Anderson Real-Time Systems Resource Sharing - 18

Each job J has an assigned priority (e.g., RM priority) and acurrent priority m(t).
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A More Complicated Example

(Thisis slightly different from the example in Figure 8-8 in the book.)

3 T B

[ |
% . [l
5 m (ot

- L B O

‘ Thismeansthis portion of the critical section executesat J,'s priority. ‘

| \ I \ \ \ \ ! \ \ |
0 2 4 6 8 10 12 14 16 18 20
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Properties of the PIP

0 We have two kinds of blocking with the PIP: dir ect

blocking and inheritance blocking.
* In the previous example, i directly blocked bysJover the
interval [6,9] and is inheritance blocked hyover the
interval [11,15].
0 Jobs can transitively block each other.
* At time 11.5, J blocks J and J blocks J.

0 The PIP doesn’t prevent deadlock.

0 A jobs that requires v resources and conflicts with k low
priority jobs can be blocked for min(v,k) times, each for|
the duration of an outermost CS.

* It's possible to do much better.
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The Priority-Ceiling Protocol
(Sha, Rgjkumar, Lehoczky)
0 Two key assumptions:
» The assigned priorities of all jobs are fixed (as before).
« The resources required by all jobs are kreogviori before the
execution of any job begins.

0 Definition: The priority ceiling of any resource R isthe
highest priority of al the jobs that require R, and is denoted
M(R).

o Definition: The current priority ceiling M'(R) of the
system is equal to the highest priority ceiling of the
resources currently in use, or Q if no resources are currently
inuse (Q isapriority lower than any real priority).

* Note: I've used instead of * due to PowerPoint limitations.
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PCP De€finition

1. Scheduling Rule:

(a) Atitsrelease timet, the current priority Ti(t) of every job Jequalsits assigned priority.
Thejob remains at this priority except under the conditions of rule 3.

(b) Every ready job Jis scheduled preemptively and in a priority-driven manner at its
current priority Ti(t).
2. Allocation Rule: Whenever ajob Jrequests aresource R a timet, one of the following
two conditions occurs:

(a) Risheld by another job. Js request fails and J becomes blocked.
(b) R is free.

(i) If J's priority T(t) is higher than the current priority ceilif(t), R is allocated to J.

(ii) If I's priority T(t) is not higher than the ceiliri@'(t), R is allocated to J only if J i
the job holding the resource(s) whose priority ceiling edquigfs otherwise, J's
request is denied and J becomes blocked.

3. Priority-Inheritance Rule: When J becomes blocked, the jothat blocks J inherits the
current priorityr(t) of J. Jexecutes at its inherited priority until it releases every resourd
whose priority ceiling ig T(t) (or until it inherits an even higher priority); at that time, the
priority of J returns to its priorityq(t') at the time'twhen it was granted the resources.
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Example

(This is the PCP counterpart of our “complicated” PIP example.)

3 N W
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Properties of the PCP

0 The PCPis not greedy.
 For example, Jin the example is prevented from locking
the green object, even though it is free.
0 We now have three kinds of blocking:
» Direct blocking (as before).
* For example, JJdirectly blocks Jat time 6.
» Priority-inheritance blocking (also as before).
* This doesn’t occur in our example.
» Priority-ceiling blocking (this is new).
« J, suffers a priority-ceiling blocking at time 3.
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Two Theorems

Theorem 8-1: When the resource accesses of a system of
preemptive, priority-driven jobs on one processor are controlled
by the PCP, deadlock can never occur.

Theorem 8-2: When the resource accesses of a system of
preemptive, priority-driven jobs on one processor are controlled
by the PCP, ajob can be blocked for at most the duration of one
critical section.
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Deadlock Avoidance

With the PIP, deadlock could occur if nested critical sections are
invoked in an inconsistent order. Here’s an example we looked at

Example: J, accesses green, then red (nestegicdesses red, then
green (nested).

U e |

3 l |

5 ‘:- -can't lock green! |
\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18

The PCP would prevent from locking green Why?
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Blocking Term

Suppose J; blocks when accessing the green critical section and later

blocks when accessing the red critical section.

blocks on green
3 =
\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18
Jim Anderson Real-Time Systems Resource Sharing - 27

27

Blocking Term

For J; block on green, some lower-priority job must have held the

lock on green when J; began to execute.

k:lbl ocks on green

3 _ wm

Jim Anderson Real-Time Systems
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Blocking Term

For J, to later block on red, some lower-priority job must have held
the lock on red when J; began executing.

blocks on green blocks on red

N el S |
L, _em wm |

3 fm |

\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18
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Blocking Term

Whichever way J, and J; are prioritized (here, J, has priority over J),
we have a contradiction. Why?

blocks on green blocks on red

N el S |
L _Fem wm |

3 fm |

\ \ \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18
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Some Comments on the PCP

0 When computing blocking terms, it isimportant
to carefully consider all three kinds of blockings
(direct, inheritance, ceiling).
» See the book for an example where this is done
systematically (Figure 8-15).
0 With the PCP, we have to pay for extratwo
context switches per blocking term.
» Such context switching costs can really add up in 4
large system.

» This is the motivation for the Stack Resource Polic
(SRP), described next.
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Stack-based Resource Sharing

0 So far, we have assumed that each task hasits
own runtime stack.

0 In many systems, tasks can share a run-time
task.

0 This can lead to memory savings because there
is less fragmentation.
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Stack-based Resource Sharing (Cont'd)

0 If tasks share aruntime stack, we clearly cannot
allow aschedule like the following. (Why?)

N el — |
L, _em mm |

0 We must delay the execution of each job until
we are sure all the resources it needs are
available.

Jim Anderson Real-Time Systems Resource Sharing - 33

33

Stack Resource Policy

(Baker)

0. Update of the Current Ceiling: Whenever al the resources are free,
the ceiling of the systemis Q. The ceiling IN'(t) is updated each
timearesourceis allocated or freed.

1. Scheduling Rule: After ajobisreleased, it is blocked from starting
executing until its assigned priority is higher than the current
ceiling IM'(t) of the system. At all times, jobs that are not blocked
are scheduled on the processor in priority-driven, preemptive manner
according to their assigned priorities.

2. Allocation Rule: Whenever ajob reguests aresource, it is allocated
the resource.

Note: Can be implemented using a single runtime stack, but thisisn't
required.
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Example

(This is the SRP counterpart of our “complicated” example.)

3 T
Notice how J, incurs its blocking term “up
J, ‘ front,” before it actually starts to execute. ‘
\ \ I \ \ \ \ I \ \ |
0 2 4 6 8 10 12 14 16 18 20
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Properties of the SRP

0 No job is ever blocked once its execution
begins.
» Thus, there can never be any deadlock.
0 The blocking term calculation is the same as
with the PCP.
» Convince yourself of this!

» One difference, though: With the SRP, a job is
blocked only before it begins execution, so extra
context switches due to blockings are avoided.
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Scheduling, Revisited

We have already talked about how to incorporate blocking terms into
scheduling conditions.

For example, with TDA and generalized TDA, we changed our time-
demand function by adding a blocking term. For TDA, we got this:

i-1 I:lt .
Wi(t):ei+bi+zlgaik forO<t<min(D,,p,)
= [P« O

For EDF-scheduled systems, we stated the following utilization-based
condition:
b

i & +— <1
= min(Dy,p,) min(D;,p;)
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A Closer Look at Dynamic-Priority
Systems

0 It turns out that this EDF condition is not very tight.

0 We now cover a paper by Jeffay that presents a
much tighter condition.

» Although it may not seem like it on first reading, Jeffg
paper basically reinvents the SRP, but for dynamic-
priority systems.

» However, the scheduling analysis for dynamic-priority

systems given by Jeffay is much better than that four
elsewhere.
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Scheduling Sporadic Tasks with Shared
Resources

(Jeffay)

0 Inthe model of this paper, each task T, is
partitioned into n; distinct phases.

» In each phase, either no resource is required or
exactly one resource is required.

» If resource Ris required by Ts jt" phase, then we
denote this by;r=k, where k k< m.

» If no resource is required, thqm 0.
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Single-Phase Systems

In asingle-phase system, each task is either a critical section that
accesses some resource, or anon-critical section that accesses
NO resource.

Notation: Each task T; will be denoted by (s, (c;, C;, r;), p;) where:
* 5 isitsreleasetime;
* G is itsminimum execution cost;
* C is itsmaximum execution cost;
« 1, indicates which (if any)esour ce is accessed,;

* p is itsperiod.

Definition: We let R denote the period of the “shortest” task that
requires resource;R.e., R=min ;.. (B | £ =1).
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Necessary Scheduling Condition

Theorem 3.2: Let T ={T,, T,, ..., T} be a system of single-phas
sporadic tasks with relative deadlines equal to their periods sug
the tasks ifT are indexed in non-decreasing order by period (i.€}
ifi <j, then p<p). If T is schedulable on a single processor, th

) Z%sl

e 2010, [
2) Hitl<isn Or#0: JILIR <L<p L 2C+ [Ic,
L g

iyt

i

]

i}
o

Compare this to the feasibility condition we had for nonpreemptiv

EDF, which is repeated on the following slide.
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Non-preemptive EDF, Revisited

periodic tasks with relative deadlines equal to their periods suc
the tasks il are indexed in non-decreasing order by period (i.e
ifi <j,thenp<p). T can be scheduled by the non-preemptive
algorithm if:

1) Z%sl

i-1 —-10
2) gﬂiilﬁiﬁniiglipl<l-<ﬂiil-29.* EIFlm,ﬁ
F .

Theorem: LetT ={T,, T,, ..., T,} be a system of independent, 'I
t

Remember, we showed this condition is also nece$sagporadic
tasks.
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Proof Sketch of Theorem 3.2

Given our previous discussion of nonpreemptive EDF, Theorem 3.2
should be pretty obvious.

Clearly, if T is schedulable, total utilization must be at most one, i.e.,
condition (1) must hold.

Condition (2) accounts for the worst-case blocking that can be
experienced by each task T;.

Remember, with nonpreemptive EDF, the “worst-case” pattern of
job releases occurs when a job of someepins executing
(non-preemptively!) one time unit before some tasks with smaller
periods begin releasing some jobs.
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Proof Sketch (Continued)

Here’s an illustration:

L O O e B e Bl e e B B

T, | 1| 1| |
Ty | ] —
T, |

Moreover, with sporadic tasks, such releases are always possible,
thus if T is schedulable, then it iecessary to ensure no deadline is
missed in the face of job releases like this.

In a single-phase system, we have the same kind of necessary col

and

hdition,

but now a task may only be blocked by a task that accesses a compmon

resource.
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EDF-DDM

0 Our goal now isto define a scheduling algorithm for which
the conditions of Theorem 3.2 are necessary.

0 Since EDF is optimal in the absence of resources, it makes
sense to look at some variant of EDF.

0 Remember with the PIP, PCP, and SRP, theideaistoraisea
lower-priority job’s priority when a blocking occurs.

0 With EDF, raising a priority means temporarily “shrinking
the job’s deadline.

0 The resulting scheme is call&fDF with dynamic
deadline modification.
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Example

Here’s what can happen withadynamic deadline modification:

T [
T, ’—\ ‘

T, . [ |
(\) \1 I N I I I I I I I I I I I

Here’s the corresponding schedule wifmamic deadline modification):

T, | mm \ _
Noticethat T,

T, | —— | coss ot
preempt T, at

T, — | timet
T T T T T T T T T T [
o 1 2..
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EDF/DDM Definition

O Let t, be thetime when job Jof task T, is
released, and let t, be the time job J starts to
execute.

O Intheinterval [t, t), J's deadline is t p, just
like with EDF.

» This is called J'snitial deadline.

0 Attimet,, J's deadline is changed to
min(t, + p, (&, + 1) + R).
» This is called J'sontending deadline.

Jim Anderson Real-Time Systems Resource Sharing - 47

a7

Sufficient Condition for EDF/DDM

Theorem 3.4: Let T ={T,, T,, ..., T,} be a system of single-phas
sporadic tasks with relative deadlines equal to their periods sugh
the tasks ifT are indexed in non-decreasing order by period (i.€
if i <j, then p< p). The EDF/DDM discipline will succeed in
schedulingT if conditions (1) and (2) from Theorem 3.2 hold.

Thus, by Theorem 3.2, (1) and (2) &easibility conditions.

Not surprisingly, the proof of Theorem 3.4 is very similar to the
corresponding proof we did for nonpreemptive EDF systems.
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Proof of Theorem 3.4

Suppose conditions (1) and (2) hold for T but a deadline is missed.
Let t, be the earliest point in time at which a deadline is missed.

There are two cases.

Case 1. Nojob with aninitial deadline after timet is scheduled prior
totimety. Theanalysisisjust like with preemptive EDF.

As before, let t; be the last “idle instant”. (This is denotgdhtthe
paper, but I've used,tto be consistent with previous proofs.)

Because a deadline is missed,atlemand over [, t;] exceeds
ty—ty. In addition, this demand is at mQst; , Hty — t.)/p, ;.

Thus, we haveyt-t,< ¥ty - t)/p0C < 35, [(tg - t)/p]C;.

This implies utilization exceeds one, which contradicts condition (1
Jim Anderson Real-Time Systems Resource Sharing - 49
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Proof (Continued)

Case 2: Somejob with an initial deadline after time t is scheduled
prior to time t,.

Let T; be the task with the last job with an initial deadline after t that is
scheduled prior to ty. Then, we have the following:

L et us bound the processor demand in [t;, ty] ... (This is where things
start to get a little different from the nonpreemptive EDF proof.)
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Proof (Continued)

Case 2a: T;'s contending deadline is less than or equa).to t

This means ;Tmust be a resource requesting task. We have the
following:

\ I —
contending initial
T [ \
Time I ‘ >
§; ty

The proof for this subcase is very much like Case 2 in the

nonpreemptive EDF proof (we get a contradiction of condition (2)).
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Proof (Continued)

0 Observe the following:

» Other than task;Tno task with a period greater than
or equal to § - t; executes in the interval,[ty].
* Such a task would contradict our choice pf T

» Other than T no task that executes in ff] could
have been invoked at time t

» The processor is fully utilized in,[ty].
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Proof (Continued)

From these facts, we conclude that demand over [t;, t ] islessthan or
equal to

C.+ii[ta“‘“' iy
E4n| P; 8 I

LetL =ty —t. Wehavep, >L >P,. (Why?) Also,

i-1 —_10
L<C + g'—l[jl‘i.
=EP g

This contradicts condition (2).
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Proof (Continued)

Case 2b: T;'s contending deadline is greater than t

This means either, Hoesn't request any resource (L) + B > t;.
We have the following:

I

contending

Time T T >
td

T, is preemptable by any job whose period lies wjthJt (Why?)
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Proof (Continued)

Lett, >t bethelater of the end of thelast idle period in [t;, t ] or the
time T, last stops executing prior to ty.

All invocations of tasks occurring prior to t; with deadlines less than
or equal to ty must have completed executing by t.;. (Why?)

\ ——

contending

Time I I ‘ >
i t-l td

Asin Case 1, we can show that demand over [t ,, ty] exceeds
ty — t,, which implies that condition (1) is violated.
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Multi-Phase Systems

Notation: Inamulti-phase system, each task T; is denoted by
(s, (c,j, Cij, rij), p), 1<i<n, 1<j<n, where
* 5 is itsreleasetime;
* ny is thenumber of phasesin each job of T
* G; is theminimum execution cog of the J° phase;
* C; is themaximum execution cost of the j" phase;
» 1y indicates which (if any)esour ce is accessed in th& phase;

* p is itsperiod.

Definition: We let R, =min ;. (p | f; = ry for some in the range
1<l<n).

Definition: Theexecution cost of Tiis E=3,-; , Cy-
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Necessary Scheduling Condition

Theorem4.1: Let T ={T,, T,, ..., T} be a system of multi-phase
sporadic tasks with relative deadlines equal to their periods sud
the tasks ifT are indexed in non-decreasing order by period (i.e
ifi <j, then p<p). If T is schedulable on a single processor, th

1) 5sl

2)([@i,k:1<i<n Ol<ks<n Or, 20:

"

i1 ] —10
E]L:Pnk <L<p-Sy:L=2C,+ ElFl[]]Elﬁ
5P 8 'l
O if k=1
whereS, = Tllcj if l<k<n,
Ugh!
Jim Anderson Real-Time Systems Resource Sharing - 57

that

57

EDF/DDM for Multi-phase Systems

O Lett, bethetimewhenjob Jof task T; isreleased, and let ty,
be the time job J's'kphase starts to execute.

0 In the interval [t t), J's deadline is # p, just like with
EDF.

0 At time t, J's deadline is changed to mjnftp, (tg + 1) +
Prid-

0 When one of J's phases completes, its deadline immed
reverts to t+ p.

0 Note that this algorithm prevents a job from beginning
execution until all the resources it requires are availablg
i.e., this is just a dynamic-priority SRP.
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Sufficient Condition for EDF/DDM

Theorem4.3: Let T ={T,, T,, ..., T} be a system of multi-phase
sporadic tasks with relative deadlines equal to their periods sugh
the tasks i are indexed in non-decreasing order by period (i.€}
if i <j, then p< p). The EDF/DDM discipline will succeed in
schedulingT if conditions (1) and (2) from Theorem 4.1 hold.

Thus, by Theorem 4.1, (1) and (2) &easibility conditions for
multi-phase, sporadic task systems.

We will not cover the proofs of Theorems 4.1 and 4.3 in class,
you should read through them in the paper.
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An Alternative to Critical Sections

o Critical sections are often used to implement
software shared objects.
» Example: producer/consumer buffer.

0 Such objects actually can be implemented without
using critical sections or related mechanisms.

0 Such shared-object algorithms are called
nonblocking algorithms.

0 Bottom Line: We can avoid priority inversions
altogether when implementing software shared
objects.
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Nonblocking Algorithms

0 Two variants:
» Lock-Free:

« Perform operations “optimistically”.
» Retry operations that are interfered with.
» Wait-Free:
« No waiting of any kind:
— No busy-waiting.

— No blocking synchronization constructs.
— No unbounded retries.

0 Recent research at UNC has shown how to account for
lock-free and wait-free overheads in scheduling analysis.
0 First, some background ...

Jim Anderson
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L ock-Free Example

shared var Tail: pointer to Qtype;
local var old, new: pointer to Qtype

procedur e Enqueue (input: valtype)
new := (input, NIL);
repeat old:=Tall

type Qtype=record v: valtype; next: pointer to Qtype end

until CAS2(&Tail, & (old->next), old, NIL, new, new)

ol EE -l

=T

I < o=

Real-Time Systems
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Wait-Free Algorithms

(Herlihy’s Helping Scheme)

! - Algorithm:
pointer to
shared process p's " " -
object | copy announce” operation;
/ — retry until done:
! create local copy of the object;
“current” ! processq’s apply all announced operations
copy - - = > copy
on local copy;
\ — attempt to make local copy the
\ “current” copy using a

\ —
N process r's strong synchronization
copy primitive

“announce” array

Can only retry once!
Disadvantage: Copying overhead.
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Using Wait-Free Algorithmsin Real -
time Systems

0 On uniprocesors, helping-based algorithms are
not very attractive.

» Only high-priority tasks help lower-priority tasks.

— Similar topriority inversion.

» Such algorithms can have high overhead due to
copying and having to use costly synchronization
primitives.

— Some wait-free algorithms avoid these problemsasadiseful.
— Example: “Collision avoiding” read/write buffers.
0 On the other hand, on multiprocessors, wait-free
algorithms may be the best choice.
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Using L ock-Free Objects on Real-time
Uniprocessors

(Anderson, Ramamurthy, Jeffay)

0 Advantages of L ock-free Objects:
» No priority inversions.

» Lower overhead than helping-based wait-free
objects.

» Overhead is charged to low-prioriysks.

O But:
» Access times angotentially unbounded.
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Scheduling with L ock-Free Objects

On auniprocessor, lock-free retries really aren’t unbounded.

A task fails to update a shared object on} if
preempted during its object call.

High i
Low | B |

. Failed retry-loop . Successful retry-loop

Can compute a bound on retries by counting preemptions.
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RM Sufficient Condition

Assume rate-monotonic priority assignment.

Sufficient Scheduling Condition:

i 0y 0 20t O EE
EJEJMKQ-ZB—@J B—@<tEF

diy

In this condition, sis the time to update alock-free object (one retry
loop iteration).

We are assuming at this point that all retry loops have the same cost.
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Proof of RM Condition

The proof strategy should be very familiar to you by now.

To Prove: If atask set isnot schedulable, then the
sufficient condition does not hold, i.e.,

g:l E] i1 (Ot O EE
t:0<t<p : [-)—[e+ O—3>t
&8 A8 EE
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Setting Up the Proof...

Let the k" job of T, be the first to missits deadline.

Lett, be the latest “idle instant” beforg.1;.

1 Tk Mk
l Failed retry-loop l Successful retry-loop
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Intuition

If atask set is not schedulable, then at all instantstin (t.y,f; ],

the demand placed on the processor by T;
and higher-priority tasksin [t_,,t) is greater than
the available processor timein [t_;,t).

Suppose not:
* Case tJ (t 1, J: Contradicts choice ofit
* Case O (11 q]: Ti's deadline at;g,, is notmissed.
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Finishing the Proof ...

For any tin (t;,r; .4], the following holds.
available processor timein [t y,t)
< demand due to T; and higher-priority jobsin [t_;,t)

= demand dueto job releases of T; and higher-priority tasks
+ demand dueto failed loop triesin T; and higher-priority tasks

< Y= (number of jobsof T, released in [t.,,t) )-&

+ 3 =1 ia(number of preemptions T; can causein T; and
higher-priority tasks) - (cost of failed loop try)
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... Finishing the Proof

Hence, for any tin (t.y,f; .4,

G-t 0 20-t.0
t—t_1<Z —@®+tY —0G
mEP B =EP O
Replacingt—t; by t"in (0, 1y, — t4],
, i Dt' O i-1 Dt' O
<SS+ o
mEPE =P
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EDF Sufficient Condition

Assume ear liest-deadline-fir st priority assignment.

Sufficient Condition:

N §+s_,
P;

IE

As before ...To Prove: If a task set T is not schedulable, then

N &*s_,
b

=
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Setting Up the Proof...

Same set-up as before...

mEE s NI e SN
a ww |

R t

t fik

. Failed retry-loop . Successful retry-loop
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Intuition

If atask set is not schedulable, then the demand
placed on the processor in [t I .,) by jobs
with deadlines at or beforer; ., is greater than
the available processor timein [t ;,f; 4]
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Finishing the Proof ...

available processor timein [t.;,f; 4]
< demand due to jobs with deadlines<r;,;

= demand due to releases of those jobs
+ demand due to failed loop triesin those jobs

< =1, [number of jobs of T; with deadlines at or before
et releasedintr )] - g

+ Y1, n (Number of preemptions T; can cause in such
jobs) - (cost of failed loop try)
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... Finishing the Proof

Hence,
S ik+ _t— D J D’| + t— D
r.,k+1_t-1< Dkl 1[@,*’ D,kl 1@,
=8 P B =8 P O
which implies,

Nt N -t
ri ot _t,l < Z ik+1 -1 ej +Z ik+1 -1 s
= P = P

Canceling r; .., — t; yields

N e N
1< J+Zi.
=P =P
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Comparison of Lock-Free & Lock-Based

0 It can be shown analytically that lock-free wins
over lock-based if:

» (lock-free access cost)(lock-based access cost)/2.

« For many objects, this will be the case, because with a lo

based implementation, you get one object access for the

price of many (due to all the kernel objects that have to bg

accessed).

0 Breakdown utilization experiments involving
randomly-generated task sets show that lock-free
islikely towinif:

» (lock-free access cost)(lock-based access cost).
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Better Scheduling Conditions

0 Previous conditions perform poorly when retry
loop costs vary widely.

0 Also, they over-count interferences (not every
preemption causes an interference).

0 Question: How to incorporate different retry
loop costs?

0 Answer: Uselinear programming.

» Can apply linear programming to both RM and EDH

(and also DM).
» We only consider RM here.
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Linear-Programming RM Condition

(Anderson and Ramamurthy)

i w() j-1

Definition: |E, (t) = JZ ; ; mlj,v (t)Sj’V

w(j) - Number of phases of T;.

mj¥(t) - Number of interferencesin T;'s vi" phase due to,Th an
interval of length t.

§¥ - Cost of one such interference.

Approach: View E(t) as a linear expression, wherg\t) are
the variables.

Maximize E(t) subject to some constraints.
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LP RM Condition (Continued)

Example Constraints (the easy ones):

R R ot |
Litj<iz Y mY()s—=
Eﬂ it Z i ® Ery %
i iow() -1 i-1 [t+1
:: <y —
E:" ;;Z”ﬁ ® T EP %

Let E/’(t) be an upper bound on(§ obtained by linear programmin

. L0t O H
RM Condition: :0<t<p, Z %Eﬁ +E(t-1)<t
=P g

i
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