
1

R
ea

l-
T

im
e

S
ys

te
m

s
 O

pe
ra

ti
ng

 S
ys

te
m

s
-

 1
S

te
ve

 G
od

da
rd

C
S

C
E

 9
90

: R
ea

l-
T

im
e

Sy
st

em
s

R
ea

l-
T

im
e

O
pe

ra
ti

ng
 S

ys
te

m
s

St
ev

e
G

od
da

rd
go

dd
ar

d@
cs

e.
un

l.e
du

h
tt

p
:/

/w
w

w
.c

se
.u

nl
.e

du
/~

g
od

da
rd

/C
ou

rs
es

/R
ea

lT
im

eS
ys

te
m

s

2

Real-Time Systems Operating Systems - 2Steve Goddard

Real-Time Operating Systems
(Sections 12.1 - 12.2 and 12.6 - 12.7 of Liu)

◆ Outline:
» Threads and Tasks (Section 12.1.1 of Liu).

» The Kernel (Section 12.1.2 of Liu)
• Most Real-Time operating systems contain a micro-kernel

whose functionality can be extended with modules.

» Time services and scheduling mechanisms (Section 12.2
of Liu).

» A brief survey of commercial real-time and non-real-
time operating systems (Sections 12.6-12.7 of Liu).

3

Real-Time Systems Operating Systems - 3Steve Goddard

Threads and Tasks
◆ Thread: A basic unit of work handled by the

scheduler.

◆ Task: Threads implement the jobs of a task.
Usually the same thread is re-used for each job of a
task.

◆ Thread Context: The values of registers and other
volatile data that define the state and environment
of the thread.

4

Real-Time Systems Operating Systems - 4Steve Goddard

Threads and Tasks (continued)
◆ TCB: The thread control block (TCB) is the data

structure created when the kernel creates a thread.
» The TCB stores the context of the thread when it is not

executing.

Task Type

Phase

Period

Relative Deadline

Number of Instances

Event List

Thread ID

Starting Address

Scheduling Info

Synchronization Info

Time Usage Info

Timer Information

Other Information

Task Parameters

5

Real-Time Systems Operating Systems - 5Steve Goddard

Implementing and Managing State Transitions

ExecutingReady

Suspended

Head

Tail
ready queue

Head
Tail

device/condition
queues

...

...
Tail

Head
prev ptr

reg values

mem ptrs

next ptr

prev ptr

reg values

mem ptrs

next ptr

prev ptr

reg values

mem ptrs

next ptr

...

name name name

Liu lists five major states: Sleeping, Ready, Executing, Suspended (or Blocked),
and Terminated.

Inserting a task on a queue, like the ready queue, really means you insert a
pointer to the TCB for that queue.

Only the middle three states are shown here. Liu claims that a task that finishes
executing, but will execute again (at the start of its next period) is placed in the
sleeping state. Since most OS do not support periodic tasks, this is often
implemented as a suspended stated where the task is blocked waiting for the
event to occur that releases the next job.

6

Real-Time Systems Operating Systems - 6Steve Goddard

Periodic Tasks and Threads
◆ A periodic tasks is implemented as a thread that executes

periodically.
◆ A periodic thread is reinitialized by the kernel and put to

sleep (i.e., transitioned to the sleeping state) when the
thread completes. It is then released again at the beginning
of the next period (i.e., transitioned to the ready state).

◆ The task parameters (e.g., phase and period) are stored in
the TCB.

◆ Most commercial operating systems do not support
periodic threads
» They are implemented at user level as a thread that sleeps until

the start of the next period after it finishes executing.

7

Real-Time Systems Operating Systems - 7Steve Goddard

Aperiodic and Sporadic Tasks
◆ An aperiodic or sporadic task is implemented as a thread

that executes in response to specified types of events,
which are usually represented as an external interrupt.

◆ An aperiodic or sporadic thread is reinitialized by the
kernel and put to sleep (i.e., transitioned to the sleeping
state) when the tread completes.

◆ Most commercial operating systems do not support
aperiodic or sporadic threads
» They are implemented at user level as a thread that blocks for a

specified event.

8

Real-Time Systems Operating Systems - 8Steve Goddard

Operating System Structure

◆ Most real-time operating systems are used in
embedded systems with limited space.
» the OS should be modular and extensible

» often built around a microkernel providing
• scheduling

• synchronization

• interrupt handling

9

Real-Time Systems Operating Systems - 9Steve Goddard

Operating System Structure

◆ Microkernel (or Client/Server)
» Centralized

» Distributed

Kernel

Client
Program

Kernel

Client
Program

Memory
Server

Window
Server

File
Server

...

File
Server

Server
Stub

...

Kernel

Network

10

Real-Time Systems Operating Systems - 10Steve Goddard

The Microkernel Structure
External
Interrupts

HW/SW
exceptions

System
Calls

Clock
Interrupts

Immediate
Interrupt
Service

Scheduling

Time
Services

Trap

Case of

Return from exception

Create_thread
Suspend_thread

Create_Timer

Other sys calls

Kernel

No trap when OS
and tasks share
same memory
space

11

Real-Time Systems Operating Systems - 11Steve Goddard

External Interrupts
◆ Hardware interrupts represent external events that trigger

sporadic task or I/O activities.

◆ Depending on the source of the interrupt, the amount of
time required to process the interrupt varies.

◆ Thus, interrupt processing is usually divided into two
phases:
» Immediate interrupt service: executed by the kernel with higher

priority than threads.

» Scheduled interrupt service: may be implemented as a
preemptive aperiodic or sporadic thread.

◆ Why do this?

◆ We call it split interrupt handling.

12

Real-Time Systems Operating Systems - 12Steve Goddard

Interrupt and Thread Priorities

System shutdown

Power down

Clock interrupt

Highest Interrupt

Lowest Interrupt

Dispatcher/Scheduler

Highest Thread

Lowest thread

Priority Levels
highest

lowest

other interrupts

other threads

Immediate
interrupt service

Scheduled
interrupt service

13

Real-Time Systems Operating Systems - 13Steve Goddard

Processing Interrupts
◆ When an interrupt occurs:

» The processor pushes the PC and SR on the interrupt stack and
branches to the Kernel’s interrupt handling code

» The Kernel then

• disables interrupts,

• saves the processor state on the interrupt stack,

• enables higher priority interrupts (if possible),

• calls the immediate interrupt service routine (ISR) of the
interrupting device, and

• enables interrupts (actually, it should restore the interrupt
mask that was in effect when the interrupt occurred).

◆ Interrupt Latency: the time between when the interrupt
occurs and when the immediate ISR starts to execute.

14

Real-Time Systems Operating Systems - 14Steve Goddard

Processing Interrupts (continued)
◆ The immediate interrupt service routine (ISR) performs

the minimum amount of work necessary to re-enable the
external device.

◆ Most of the real interrupt processing is done by a
scheduled interrupt handling routine (IHR), which is
released/triggered by the immediate ISR.

◆ The scheduled IHR is executed at an appropriate
application-level priority (usually preemptive).

◆ When the OS provides memory protection (e.g., LynxOS
and Solaris), the scheduled IHR is executed by a kernel
thread (rather than an application thread).

15

Real-Time Systems Operating Systems - 15Steve Goddard

System Calls
◆ A system call is a call to the operating system’s

application program interface (API).

◆ Most real-time operating systems provide their own API
and the POSIX (Portable Operating Systems Interface)
standard 1003.1 API.
» POSIX 1003.1 defines the basic functions of a Unix OS.

» Many support at least a portion of the real-time (POSIX 1003.1b)
and thread (POSIX 1003.1c) extensions.

◆ The system call may be synchronous or asynchronous
» synchronous: the calling thread is blocked until the kernel

completes the called function

» asynchronous: the thread continues after making the call and the
call is performed by a separate thread.

16

Real-Time Systems Operating Systems - 16Steve Goddard

Time Services
◆ Every system has at least one hardware device that

contains a counter.
» The counter is initialized with a specified value and counts down

to 0. When it reaches 0, the counter generates an interrupt.

◆ A counter can (usually) be programmed to act as either:
» periodic timer: generates an interrupt every p time units.

» one-shot timer: must be re-initialized after each interrupt.

◆ The counter can serve as a clock and/or a timer.
» A clock is a counter and ISH that together keep (system) time.

» a timer is a counter and ISH that triggers an event e at time t
(relative or absolute).

17

Real-Time Systems Operating Systems - 17Steve Goddard

Clocks and Time
◆ The resolution of a clock is the granularity of time

provided by the counter.
» The hardware resolution may be on the order of nanoseconds.

» However, the resolution seen by the application is usually in the
order of hundreds of microseconds or milliseconds.

◆ A clock is implemented with a periodic timer.

◆ When a system has only one counter, it serves as both a
clock and a timer.
» In this case, the kernel tracks timer expirations using the clock.

◆ At each clock period, a time-service interrupt is processed:
» The kernel updates the software clock, and

» checks the clock’s timer queue for timer expirations, moving any
to a pending queue.

18

Real-Time Systems Operating Systems - 18Steve Goddard

Clocks and Time
◆ One out of every x time-service interrupts is considered a

clock interrupt, which results in the scheduler executing.

◆ The clock interrupt is (almost) always processed using
split interrupt handling techniques.
» The immediate ISR processes the time services interrupt

» The scheduled IHR, the Dispatcher/Scheduler thread, is
released/triggered by the immediate ISR and performs scheduling
services:
• Processes all timer events in the pending queue by performing the specified

event action.

• Updates the execution budget for RR time-slice scheduling.

• Updates the ready queue.

• Dispatches the highest priority thread (assuming preemptive scheduling).

19

Real-Time Systems Operating Systems - 19Steve Goddard

Timers
◆ Most operating systems (including all Real-Time POSIX

compliant systems, NT, and Solaris) allow a thread to have
it own timer.

◆ Threads can create, set, cancel, and destroy timers.

◆ When a timer is created by a thread, the kernel creates a
timer data structure, which includes:
» the clock associated with the timer

» the thread that created the timer

» the expiration of the timer in absolute or relative time, once set

» the timer type: one-shot or periodic

» an event handler: a routine to execute when the timer expires.

20

Real-Time Systems Operating Systems - 20Steve Goddard

Timers
◆ Synchronous Timers suspend the calling thread until the

timer has expired.
» For example, timer_sleep(relative_time) or

timer_sleep_until(absolute_time)

◆ Asynchronous Timers count down while the calling thread
executes.
» When the timer expires, the associated handler is called.

» Threads may have multiple asynchronous timers active.

» Asynchronous timers can be used as a timing monitor to log
missed deadlines (see Figure 12-4 in Liu).

21

Real-Time Systems Operating Systems - 21Steve Goddard

Timer Resolution
◆ Nominal timer resolution is the granularity of absolute

time or time interval specified as an argument to the timer
function.
» If the nominal timer resolution is x microseconds, then the OS

will not mistake two timer events set x microseconds apart as a
single timer event.

◆ Actual timer resolution is the granularity of time measured
by application threads using timers.
» If timers are implemented with a periodic timer interrupt, a

counter in periodic timer mode, the actual timer resolution can be
no greater than period of the counter.

» Worse, if the kernel only schedules at clock interrupts, the actual
resolution may be as high as the period of clock interrupts (rather
than the higher frequency of timer-service interrupts).

22

Real-Time Systems Operating Systems - 22Steve Goddard

Timer Resolution
◆ Timer resolution can be improved using One-Shot Timer

Interrupts rather than periodic timer interrupts.
» The counter raises an interrupt at each timer expiration.

» The kernel must re-set the counter for the next timer interrupt.

» The kernel either invokes or schedules the handler as soon as the
interrupt occurs.

» Resolution is limited by the time the kernel takes to set and
service the counter.

23

Real-Time Systems Operating Systems - 23Steve Goddard

Scheduling Mechanisms
◆ All operating systems support Fixed Priority Scheduling.

» Many real-time operating systems provide 256 priority levels.
• We have already seen that 256 levels approximates an ideal system.

» General purpose operating systems usually provide 10-20 levels.
• NT has only 16 real-time priority levels.

» The priority is usually set (once) when the thread is created and
stored in the TCB.

» The kernel (usually) maintains a ready queue for each priority
level.

» Dispatching the highest priority ready thread requires finding the
highest priority nonempty queue.
• How do we do this?

• What is the complexity of this?

24

Real-Time Systems Operating Systems - 24Steve Goddard

Dispatching Threads
◆ An efficient way of doing this:

» Data structures:
• Assume a K-bit queue-status word and Ω priority queues

• Let each bit of the bit of the word represent the status of Ω/K priority
queues

• If a bit is set, one of the Ω/K associated queues has a ready thread

» Finding a ready thread:
• If the queue-status word > 0 then a thread is ready

– perform a binary search on the word (comparing its value to powers of 2) to
find the highest-order bit set

– find the highest priority non-empty queue of the Ω/K queues associated with
the highest-order bit set, and dequeue the job at the head of the queue

– clear the associated bit in the queue-status word if all Ω/K queues are empty

» Complexity: at most Ω/K + log2K
• at most 13 comparisons for a 32-bit queue-status word and 256 priorities

25

Real-Time Systems Operating Systems - 25Steve Goddard

EDF Scheduling Mechanisms
◆ Few operating systems support EDF Scheduling.

◆ However, only 2 changes to most kernels are required:
» The relative deadline parameter should be stored in the TCB.

» An absolute deadline is calculated from its release time and
relative deadline and then stored in the TCB.

◆ Each priority represents a relative deadline value.

◆ A released thread is appended to the FIFO priority queue
corresponding to its relative deadline.
» Thus, each of these FIFO queues are sorted by absolute time.

» The scheduler only needs to search among the threads at the head
of each queue for the earliest deadline.

» Moreover, the threads at the head of each FIFO queue can also be
kept in a separate priority queue sorted by absolute deadline.

26

Real-Time Systems Operating Systems - 26Steve Goddard

Capabilities of Commercial Real-Time
Operating Systems

◆ We will look at these real-time operating systems:
» LynxOS, pSOSystem, QNX, VRTX, and VxWorks

◆ Each of these systems shares the following attributes:
» Compliant or partially compliant to the Real-Time POSIX API

Standard:
• Preemptive, fixed priority scheduling

• Standard synchronization primitives (mutex and message passing).

• May support only threads or processes, but not both.

• Each also has its own API.

» Modular and scalable
• The kernel is small so that it can fit in ROM in embedded systems

• I/O, file, and networking modules can be added

27

Real-Time Systems Operating Systems - 27Steve Goddard

Shared Attributes (continued)
» Fast and efficient:

• Most are microkernel sytems

• Low overhead

• Small context switch time, interrupt latency, and semaphore get/release
latency: usually one to a few microseconds.

• Nonpreemptable portions of kernel functions are highly optimized, short,
and as deterministic as possible.

• Many have systems calls that require no trap: applications run in kernel
mode.

» Support Split Interrupt Handling

» Flexible Scheduling:
• All offer at least 32 priority levels: min required by Real-Time POSIX.

• Most offer 128 or 256 priority levels.

• FIFO or RR scheduling for equal priority threads

• Can change priorities, but EDF scheduling is not supported.

28

Real-Time Systems Operating Systems - 28Steve Goddard

Shared Attributes (continued)
» Relatively High Clock and Timer Resolution:

• Nominal timer resolution in the nanosecond range

• Actual timer resolution in the microsecond range.

» No Paging or Swapping:
• May not offer memory protection: often the kernel and all tasks execute in

kernel mode, sharing one common address space.

• May provide logical to physical memory translation.

» Optional Networking Support:
• Can be configured to support TCP/IP with an optional module.

29

Real-Time Systems Operating Systems - 29Steve Goddard

LynxOS
◆ Latest release, LynxOS 3.0, is based on a 28KB

microkernel, which provides:
» scheduling, interrupt dispatch, and synchronization

◆ Kernel Plug-Ins (KPIs) are lightweight multi-threaded
kernel service modules that can be added so that:
» LynxOS can serve as a multi-purpose Unix OS.

» LynxOS can be configured as a self-hosted system.
• Embedded applications are developed on the same system on which they

are deployed and run.

• Greatly simplifies developing and debugging embedded systems.

◆ Thus, LynxOS also provides optional memory protection
(with an MMU) and demand paging.

30

Real-Time Systems Operating Systems - 30Steve Goddard

pSOSystem
◆ Object oriented operating system.

◆ pSOS+ is a preemptive, multitasking kernel that executes
on a single processor.

◆ pSOS+m is a distributed multiprocessor kernel.

◆ Tasks can be scheduled with either preemptive priority-
driven or time-driven scheduling algorithms.

◆ Device drivers are outside the kernel and can be loaded
and removed at run-time.
» When an interrupt occurs, the processor jumps to the ISR via a

vector table rather than going through the kernel.

31

Real-Time Systems Operating Systems - 31Steve Goddard

QNX/Neutrino
◆ Capable of scaling from a 12KB microkernel on a single

processor to a self-hosted, multi-processor OS executing
on networked SMP machines with gigabytes of RAM.

◆ In Neutrino, the most recent version of the microkernel,
the kernel only provides threads, context switching, and
messaging services.

◆ Optional modules, called resource managers, can provide
additional services ranging from memory protected
processes to network services.

◆ QNX is a message-passing OS: messages are the basic
means of IPC.
» QNX messages are blocking send/receive: no buffer copying

32

Real-Time Systems Operating Systems - 32Steve Goddard

VRTX
◆ Two multitasking kernels: VRTXsa and VRTXmc

◆ VRTXsa is for medium and large real-time applications
» POSIX compliant library, even supports POSIX real-time

extensions.

» System calls are deterministic and preemptable.

◆ VRTXmc is optimized for small embedded platforms:
» Cellular phones and other hand held devices.

» Provides only basic functions.

» Kernel requires 4-8KB of ROM and 1 KB of RAM.

◆ VRTX is the first commercial real-time OS certified by the
FAA for mission and life-critical systems.
» Used for the avionics on the Boeing MD-11 aircraft.

33

Real-Time Systems Operating Systems - 33Steve Goddard

VxWorks
◆ Used on the Mars Pathfinder

» A feature of the OS, called priority inheritance, fixed the problem
Pathfinder was having after it landed.

» More on this story later in the semester!

◆ VxWorks is one of the few real-time operating systems
that is a monolithic system rather than being based on a
microkernel.

◆ However, it does allow major functions, such as memory
protection and priority inheritance, to be disabled.

◆ Supports POSIX and most POSIX real-time extensions.

◆ The (native) VxWorks API is very popular and powerful.
» Many VxWorks API functions have a timeout feature.

34

Real-Time Systems Operating Systems - 34Steve Goddard

VxWorks (continued)
◆ VxWorks is not a multiprocessor OS, but it provides

shared-memory multiprocessing support as an option.

◆ Provides virtual-to physical address mapping using an
MMU if one is available.
» Can make portions of memory non-cacheable.

» All task use a common context at system start time.

» However, a task can create a private virtual memory for memory
protection.

◆ The Tornado tools create a cross-platform development
environment:
» These tools execute on a host machine and communicate with the

target over an I/O interface.

35

Real-Time Systems Operating Systems - 35Steve Goddard

General Purpose Operating Systems
used in Real-Time Systems

◆ General purpose operating systems are frequently being
used to execute (soft or firm) real-time applications such
as multimedia programs.

◆ We will look at Windows NT and Linux.

◆ Guess which is least suitable for real-time applications.

◆ Wrong! It is Linux.

36

Real-Time Systems Operating Systems - 36Steve Goddard

Windows NT
◆ The Good:

» Supports threads, priority interrupts, and events.

» High timer and clock resolutions.

◆ The Bad:
» Large memory footprint (lets face it, this thing is a beast!)

» Weak support for real-time scheduling and resource access
control. (We will not cover resource access control since we
haven’t yet talked about resource sharing.)

» Unpredictable interrupt handling and IPC mechanisms.
• Can be somewhat controlled by keeping utilization low.

◆ The Ugly:
» Its Microsoft! ✪

37

Real-Time Systems Operating Systems - 37Steve Goddard

Windows NT: Scheduling
◆ Limited Priority Levels: only 32 total

» Priorities 0-15 are for time-shared applications.

» Priorities 16-31 are for real-time applications--the OS never
changes these priorities.

» Many kernel threads execute at priority level 16 (the lowest real-
time priority level). Thus, memory management, file systems,
and other services may be delayed by higher priority real-time
threads.

» Worse, in NT 4.0, the SetThreadPriority() function only allows a
user thread to specify 7 of the 16 real-time priority levels.
• There is a kludge to work around this limitation.

• NT 5.0, aka Windows 2000, fixes this deficiency.
– But then Windows 2000 requires 128MB RAM and recommends 256MB!

38

Real-Time Systems Operating Systems - 38Steve Goddard

Windows NT: Scheduling (cont.)
◆ Scheduling within a Priority Level:

» NT 4.0 only supports RR (time-sliced) scheduling for threads
with the same real-time priority.

» Windows 2000 RR or FIFO scheduling for threads with the same
real-time priority, but you have to jump through hoops to enable
the FIFO option.

◆ The scheduler/dispatcher thread may be blocked by
scheduled IHRs, called Deferred Procedure Calls (DPC).
» Immediate ISRs are short and let DPCs do most of the device

handling--just as all of the real-time operating systems do.

» DPCs execute below interrupt priorities, but higher than any
scheduled threads, including the scheduler/dispatcher.

» Worse, their execution time is unbounded!

39

Real-Time Systems Operating Systems - 39Steve Goddard

Windows NT: IPC Mechanisms
◆ Events are used to synchronize threads.

» A thread is suspended while it waits for one or more specified
events. (Thus, events are a synchronous IPC mechanism.)

» Like Real-Time POSIX, events are queued. Thus, they will not
be lost if not handled immediately.

» Unlike Real-Time POSIX, events are delivered in FIFO order
and do not carry data.

◆ The kernel and device drivers use Asynchronous
Procedure Calls (APC) to move data to/from user space.
» Kernel-mode APCs interrupt a thread to move data on behalf of

the thread, but then the thread is nonpreemptable by higher
priority threads while the APC executes.

» POSIX signals are implemented using APCs.

40

Real-Time Systems Operating Systems - 40Steve Goddard

Linux
◆ The Good:

» 100 total priority levels by default.

» Linux provides flexible scheduling policies.

» You have the source. So if you don’t like something, change it!

◆ The Bad:
» Most Linux subsystems disable priorities in critical sections.

• For the disk subsystem this may be a few hundred microseconds.

» Timer error can be large and unpredictable.

◆ The Ugly:
» What could be ugly about Linux! ✪

• Well, besides its still not based on a microkernel.

41

Real-Time Systems Operating Systems - 41Steve Goddard

Linux: Scheduling
◆ 100 Priority Levels

◆ Linux provides SCHED_FIFO, SCHED_RR and
SCHED_OTHER scheduling policies
» SCHED_FIFO and SCHED_RR are fixed priority algorithms for

real-time processes.

» SCHED_OTHER is a time sharing algorithm for non-real-time
processes, which execute at a lower priority than real-time
processes.

◆ LinuxThreads, by X. Leroy, provides a kernel-level
threads package that provides most of the POSIX thread
extensions.

42

Real-Time Systems Operating Systems - 42Steve Goddard

Linux: UTIME Extension
◆ Linux provides low resolution timers

» Timers are serviced during clock interrupts, normally every 10 milliseconds
using the periodic timer mode of the clock device.

» Timer handlers are executed just before the kernel returns control to the
application.

» This results in large and unpredictable timer error.

◆ UTIME is a high resolution time service developed by Douglas
Niehaus and his students at Kansas University.
» Provides microsecond clock and timer granularity

» Uses one-shot timer mode of the clock device to generate an interrupt when
the next timer expiration occurs.

» No free lunch: the execution time of the timer ISR is several times larger than
in standard Linux.

» Timer handlers are still executed just before the kernel returns control to the
application.

43

Real-Time Systems Operating Systems - 43Steve Goddard

KURT:
Kansas University Real-Time Linux

◆ Linux extension that supports firm real-time applications.

◆ Three modes:
» Focused mode - only real-time processes run when the system is

in focused mode. These processes are scheduled in a time-driven
manner using a pre-computed table.

» Normal mode - standard Linux mode.

» Mixed mode - non-real-time processes run in the background of
real-time processes.

◆ Source of Unpredictability:
» KURT allows large schedules that may need to be paged.

» All of the normal stuff: interrupts disabled for extended time,
disk accesses, etc.

44

Real-Time Systems Operating Systems - 44Steve Goddard

Real-Time Linux
from New Mexico Tech

◆ Extends Linux to supports hard real-time applications.

◆ Divides applications into two parts.

» A real-time part that executes on the RT kernel.

» A non-real-time part that executes on “normal” Linux.

◆ Linux is actually executed as the idle task for the RT Kernel.
» The RT Kernel captures all interrupts and then forwards interrupts destined for

Linux via software emulated interrupts.

» Thus, Linux is fully preemptable for the real-time tasks.

◆ All communication between real-time tasks and non-real-time tasks
is done via FIFO buffers locked in memory.

◆ The most recent version supports a POSIX API and SMPs.

45

Real-Time Systems Operating Systems - 45Steve Goddard

Real-Time Linux Structure

Real-Time Kernel

External
Interrupts

HW/SW
exceptions

Clock
Interrupts

Linux

Real-Time Tasks

Linux Processes

Real-Time FIFO Buffers

