
1

R
ea

l-
T

im
e

Sy
st

em
s

 C
om

pl
ex

iti
es

 -
 1

Ji
m

 A
nd

er
so

n

C
SC

E
 9

90
: R

ea
l-

T
im

e
Sy

st
em

s

C
om

pl
ex

it
ie

s
in

 R
ea

l S
ys

te
m

s

St
ev

e
G

od
da

rd
go

dd
ar

d@
cs

e.
un

l.e
du

h
tt

p
://

w
w

w
.c

se
.u

n
l.e

d
u

/~
g

o
d

d
ar

d
/C

o
u

rs
es

/R
ea

lT
im

eS
ys

te
m

s

2

Real-Time Systems Complexities - 2Jim Anderson

Complexities Arising in Real Systems
(Sections 6.8.1 - 6.8.5 of Liu, Section 2.3 of Krishna and Shin)

◆ In the task model assumed so far,
» all tasks are independent,

» there is no penalty for preemption,

» preemptions may occur at any time, and

» an unlimited number of priority levels exists.

◆ We now consider how to “massage” the analysis
presented previously for use in systems in which
some of these assumptions do not hold.

◆ We also consider the problem of determining
execution costs. This is know as timing analysis.

3

Real-Time Systems Complexities - 3Jim Anderson

Nonpreemptability
◆ In practice, tasks may have nonpreemptive

regions due to system calls, critical sections, I/O
calls, etc.

◆ The use of nonpreemptive regions can result in
priority inversions.

◆ A priority inversion is said to exist when a high-
priority task is prevented from running because it is
blocked by lower-priority tasks.

◆ Priority inversions may lengthen the response
times of higher-priority tasks and make them miss
their deadlines.

4

Real-Time Systems Complexities - 4Jim Anderson

Priority Inversions

Example: Three tasks, T1 = (3,0.5), T2 = (4,1), T3 = (6,2). T3 is
nonpreemptive.

T3

T2

T1

priority inversions

Note that if T1 had a relative deadline of 0.75, then it would miss a
deadline here, while in the preemptive version of this system, it
would always meet its deadlines.

5

Real-Time Systems Complexities - 5Jim Anderson

Effect of Blocking on Schedulability
Suppose we know that bi is maximum total duration for which each
job of task Ti may be blocked by lower-priority tasks.

Note: All of Chapter 8 is devoted to the problem of dealing with
blockings that occur when tasks share resources. We will
consider how to determine bi then.

How does the scheduling analysis presented previously change?

Fixed-Priority Systems

Time-demand analysis. Similar to before, except that the time-demand
function is as follows:

)p,min(D t 0for e
p

t
be(t)w iik

1i

1k k
iii ≤<⋅

++= ∑

−

=

6

Real-Time Systems Complexities - 6Jim Anderson

Schedulability (Continued)
Generalized Time-demand analysis. Similar to before, except that
the time-demand function is as follows:

)p,min(D t 0for e
p

t
be(t)w iik

1i

1k k
iii ≤<⋅

++= ∑

−

=

Rate-monotonic Utilization Test. Task Ti is schedulable if

)(iU
p

b
U

p

be

p

e

p

e
RM

i

i
i

i

ii

2

2

1

1 ≤+=++++ L
Why do we
have to test
each task
separately?

Question: Are the TDA and Generalized TDA tests necessary and
sufficient, or just sufficient?

7

Real-Time Systems Complexities - 7Jim Anderson

Schedulability Under EDF

Theorem 6-18: In a system where jobs are scheduled under EDF,
a job Jk with relative deadline Dk can block a job Ji with relative
deadline Di if and only if Dk > Di.

Why is this true?

In an EDF-scheduled system, all deadlines will be met if the following
holds for every i = 1, 2, …, n:

1
)p,min(D

b

)p,min(D

e

ii

i
n

1k kk

k ≤+∑
=

Question: Why “if” and not “if and only if”?

8

Real-Time Systems Complexities - 8Jim Anderson

Effect of Suspensions

T3

T2

T1

Example Schedule: Three tasks, T1 = (3,0.5), T2 = (4,1), T3 = (6,2).

Here’s the system with no suspensions:

9

Real-Time Systems Complexities - 9Jim Anderson

Effect of Suspensions

T3

T2

T1

Example Schedule: Three tasks, T1 = (3,0.5), T2 = (4,1), T3 = (6,2).

Here’s the system assuming J2,2 begins with a 2 time unit suspension:

T1 is completely unaffected by T2’s suspension.

T3’s worst-case response time lengthens from 4 to 5 time units.

10

Real-Time Systems Complexities - 10Jim Anderson

Scheduling Analysis with Suspensions

◆ Calculate a “blocking term” due to suspensions:

◆ Add this blocking term to bi, discussed earlier.
» Do we get “if” or “if and only if” conditions?

◆ If we have both nonpreemptivity and
suspensions, what happens?
» Do things get better, or worse?

bi(ss) = maximum self suspension time of Ti

 + ∑k=1,…,i-1 min(ek, maximum self suspension time of Tk)

11

Real-Time Systems Complexities - 11Jim Anderson

Context Switches
◆ In reality, context switches don’t take 0 time.

◆ We can account for context switches in all of the
analysis presented previously by inflating job
execution costs.

• If each job of Ti self-suspends Ki times, add 2(Ki + 1)CS to ei.

◆ Note that dynamic-priority schemes context switch
more than static-priority schemes.

• In a scheme like LLF, in which a job’s priority is dynamic,
context switching costs may be prohibitive.

• A nonpreemptive scheme will context switch the least.
– Note that our earlier proof that EDF is better than nonpreemptive EDF

assumed a cost of zero for preemptions!

12

Real-Time Systems Complexities - 12Jim Anderson

Limited Priority Levels

◆ In reality, the number of priority levels in a
system will be limited.
» The IEEE 802.5 token ring has only 8 priority levels.

» As we shall see, most real-time OSs have at most 256
priority levels.

◆ As a consequence of this, we may have multiple
tasks per priority level. Two issues:
» How does this impact scheduling analysis?

» How do we assign real priorities?

13

Real-Time Systems Complexities - 13Jim Anderson

Scheduling Analysis
Most systems schedule same-priority tasks on a round robin or FIFO
basis. Assuming this, we can adjust our analysis as follows.

TDA: The time-demand function becomes:

)p,min(D t 0for e
p

t
 ebe(t)w ii

(i)TT
k

k(i)TT
kiii

HkEk

≤<⋅

+++= ∑∑

∈∈

(t) w t 1)p(jfor

e
p

t
 e1

p

1)p(j
bje(t)w

ji,i

(i)TT
k

k
k

(i)TT k

i
iiji,

HkEk

≤<−

⋅

+⋅

+

 −++= ∑∑
∈∈

Generalized TDA:

14

Real-Time Systems Complexities - 14Jim Anderson

Assigning Priorities

Let the assigned priorities be denoted 1, 2, …, Ωn (highest to lowest).

Denote the system priorities by π1, π2, …, πΩs, where πk is a positive
integer in the range [1, Ωn] and πj is less than πk if j < k.

We call {π1, π2, …, πΩs} the priority grid.

We map the assigned priorities onto this grid.

All assigned priorities that are at most π1 are mapped to π1.

Assigned priorities in the range (πk-1, πk] are mapped to πk for
1 < k ≤ Ωs.

15

Real-Time Systems Complexities - 15Jim Anderson

Mappings

◆ Question: How to map priorities?

◆ An obvious choice: Use a uniform mapping.
» After thinking about this for a few minutes, it should

be clear to you that it would be advantageous to have
more distinct priorities at higher priority levels.

◆ A better choice: Use a constant ratio mapping.
» Idea: Keep the ratios (πi-1+1)/ πi as equal as possible.

16

Real-Time Systems Complexities - 16Jim Anderson

Schedulability Loss

Let g = min2 ≤ i ≤ Ωs (πi-1 + 1)/πi.

Consider the RM algorithm with Di = pi.

Lehoczky and Sha showed that when the constant ratio mapping is
used, the schedulable utilization approaches

ln (2g) + 1 − g if g > 1/2
g if g ≤ 1/2

for large n.

The ratio of this schedulable utilization to ln 2 is the relative
schedulability, which is a measure of schedulabilty loss due to an
insufficient number of priority levels.

17

Real-Time Systems Complexities - 17Jim Anderson

Schedulability Loss (Continued)

For a system of 100,000 tasks (Ωn = 100,000), the relative
schedulability is 0.9986 when Ωs equals 256.

Hence, 256 should be a sufficient number of priorities for most
applications.

18

Real-Time Systems Complexities - 18Jim Anderson

Schedulability Loss in EDF Systems

Here, we can compress the number of priority levels by shortening
some job deadlines.

For example, the scheduler could map all relative deadlines in the
range [D, D′] to D.

In essence, some jobs will have relative deadlines less than their
periods.

As a result, we have to use densities to check schedulability.

19

Real-Time Systems Complexities - 19Jim Anderson

Tick Scheduling
◆ We have assumed so far that the scheduler is

activated whenever a job is released.

◆ In many systems, the scheduler is activated only at
clock interrupts.

◆ This is called tick scheduling, time-based
scheduling, or quantum-based scheduling.

◆ Two main consequences for scheduling:
• We must regard the scheduler itself as a high-priority periodic

task.

• We may have additional blocking times due to the possibility
that a job can be released between clock interrupts.

20

Real-Time Systems Complexities - 20Jim Anderson

Tick Scheduling in Fixed-priority
Systems

Do the following when computing the time-demand function for Ti:

(1) Include the task T0 = (p0, e0) in the set of higher-priority tasks, where p0 is the
 clock interrupt period and e0 is the scheduling cost per interrupt.

(2) Add (Kk + 1)CS0 to the execution time ek of every higher-priority task Tk,
 1 ≤ k ≤ i, where Kk is the number of times a job of Tk may self suspend.

(3) For every lower-priority task Tk, i+1 ≤ k ≤ n, add a task (pk, CS0) in the set of
 higher-priority tasks.

(4) Make the blocking time due to nonpreemptivity of Ti equal to
 (maxi+1 ≤ k ≤ n θk/p0 + 1)⋅p0, where θk is the maximum execution time of
 nonpreemptable sections of the lower-priority task Tk.

21

Real-Time Systems Complexities - 21Jim Anderson

Tick Scheduling in Dynamic-priority
Systems

Do the following when checking the schedulability of Ti:

(1) Add the task T0 = (p0, e0) .

(2) Add (Kk + 1)CS0 to the execution time ek of every task Tk, 1 ≤ k ≤ n.

(3) Make the blocking time due to nonpreemptivity of Ti equal to
 (maxi+1 ≤ k ≤ n θk/p0 + 1)⋅p0, where θk is the maximum execution time of
 nonpreemptable sections of a task Tk whose relative deadline is larger than the
 relative deadline of Ti.

22

Real-Time Systems Complexities - 22Jim Anderson

Remaining Issues

◆ We are skipping the remaining two subsections in
Section 6.8.

◆ Section 6.8.6 considers fixed-priority systems in
which each job may consist of different segments
that execute at different priority levels.
» The analysis here isn’t rocket science, but it’s pretty

ugly.

◆ Section 6.8.7 introduces hierarchically-scheduled
systems by considering a priority-driven/round-
robin system.

23

Real-Time Systems Complexities - 23Jim Anderson

Timing Analysis
 (Section 2.3 of Krishna and Shin)

◆ Until now, we have assumed that job execution
costs, the ei terms in our model, are provided to us.

◆ In reality, these terms have to be determined.
• This is called timing analysis.

◆ If we were using a processor with no caches and
pipelining, this would be easy: just count cycles.

• Such processors do get used in embedded applications (why?).

◆ However, with modern processors, timing analysis
is a difficult problem.

• Indeed, this is where the real grunge and messiness of real-
time analysis lies.

24

Real-Time Systems Complexities - 24Jim Anderson

Factors that Affect Timing Analysis
◆ The goal of current research in timing analysis is to

produce tools that can determine execution costs.
» Such tools are a little like compilers, except that they

produce numbers rather than machine code.

» The following factors affect the design of such tools:
• Source code. (Obviously.)

• Compiler. If a program is expressed in high-level code, then more of its
structure is exposed. However, the compiler may perform many
optimizations in mapping source code to machine code.

• Machine architecture. A timing analysis tool must take into account
the way caching is done, whether instructions are pipelined, etc.

• Operating system. Memory management and scheduling (particularly,
the frequency of preemptions) affect program execution times.

25

Real-Time Systems Complexities - 25Jim Anderson

Some Simple Examples

Example 1: Consider the following code sequence.

L1: a := b * c;
L2: b := d + e;
L3: d := a − f;

Total execution time is given by ∑i=1,..,3 Texec(Li), where Texec(Li) is
the time to execute Li. To determine, Texec(L1), for example, we
would need to look at the machine code generated for L1:

L1.1: Get the address of c
L1.2: Load c
L1.3: Get the address of b
L1.4: Load b
L1.5: Multiply
L1.6: Store into a

26

Real-Time Systems Complexities - 26Jim Anderson

Computing Texec(L1)

If the machine has no caches, does not use pipelining, has only
one I/0 port to memory, and there are no interrupts, then

Texec(L1) = ∑i=1,…,6 Texec(L1.i).

But even then, the bound may be rather loose.

• The values of b and c may already be in memory and thus
 don’t need to be loaded again.

• The time to execute some instructions, like multiply, may
 depend on actual data values.

27

Real-Time Systems Complexities - 27Jim Anderson

Loops (and Recursion)

What do we do with a loop like the following?

L4: while (P) do
L5: Q1;
L6: Q2;
L7: Q3
L8: od

Clearly, we are going to run into halting-problem-type issues here.
For this reason, most real-time languages forbid loops that aren’t
clearly bounded and also recursion. Loops like the following are OK:

for i := 1 to 10 do Q od

28

Real-Time Systems Complexities - 28Jim Anderson

Conditional Statements

Consider the following code sequence:

L9: if B1 then
S1

else if B2 then
S2

else if B3 then
S3

else
S4

fi

The execution time depends on which of the conditions B1, B2,
and B3 are true.

29

Real-Time Systems Complexities - 29Jim Anderson

Conditional Statement (Continued)

If B1 is true, then the execution time is

T(B1) + T(S1) + T(JMP)

If B1 is false and B2 is true, then the execution time is

T(B1) + T(B2) + T(S2) + T(JMP)

We might be interested in computing both lower and upper bounds
on execution cost. For this conditional statement,

Tlower(L9) = min i ∈ {1, 2, 3, 4} tlower(i)
Tupper(L9) = maxi ∈ {1, 2, 3, 4} tupper(i)

where tlower(i) (tupper(i)) is a lower (upper) bound for case i.

30

Real-Time Systems Complexities - 30Jim Anderson

Park and Shaw’s Timing Analysis Tool

Preprocessor

Parser

Timing schema

Code prediction

Architecture analyzer

Procedure timer Loop bounds

This is one of the first timing analysis tools to be proposed.

Produces assembly code marked
off into blocks to be analyzed

Maintains a table of procedures
and their execution times

Determines how many
times each loop iterates

Computes upper and lower
bounds on execution times at
the source code level. Determines execution costs

for source code statements
by looking at assembly code

Details of the architecture
are embedded here

31

Real-Time Systems Complexities - 31Jim Anderson

Other Tools
◆ Park & Shaw didn’t consider pipelining & interrupts.

◆ At virtually every RTSS, papers on new timing
analysis tools are presented.
» Some of the issues investigated in recent papers include:

• Pipelining in RISC and non-RISC machines.

• Overhead due to preemptions.
– Note: Despite being theoretically inferior, nonpreemptive scheduling

schemes have a big advantage when it comes to timing analysis.

• Instruction caches and data caches.
– Instruction caches are easier to deal with than data caches.

» Each paper pertains to a particular architecture. Said
another way, each architecture requires its own tool!

32

Real-Time Systems Complexities - 32Jim Anderson

An Example with Pipelining
To give you some idea of how grungy timing analysis is, we will work
out a simple example with pipelining.

(Notice how many simplifying assumptions we make and how messy the analysis
is despite all these assumptions.)

Recall that in a pipelined machine, different parts of different
instructions may be handled simultaneously.

Complexity arises from (at least) three sources:

• Instruction dependencies: If Ii requires the output of Ij, then Ii must
 wait for Ij to produce that output before it can execute.

• Conditional branches: We do not a priori know which instruction will be
 executed after a conditional branch.

• We can either stop prefetching until it is know which branch will be take, or
• Make a guess as to which branch will be taken (most systems do this).

• Interrupts: Are like unexpected branches.

33

Real-Time Systems Complexities - 33Jim Anderson

Assumptions

◆ We make the following assumptions:
• We only have to analyze a straight-line code sequence I1, …, IN.

• Our pipeline only has only two stages: a fetch stage and an
execute stage.

• If the second stage needs to read memory, there is a one cycle
delay in handshaking with the first stage.

• If the second stage needs to write memory, there is a one cycle
delay in handshaking with the first stage.

• The second stage has nonpreemptive priority over the first.

• There is no cache. (!!)

• All data is memory resident. (!!) Thus, we have no page faults.

• There are no interrupts or preemptions. (!!)

34

Real-Time Systems Complexities - 34Jim Anderson

Two-Stage Pipeline

Instruction-
fetch stage

Execute
stage

 MEMORY

Memory
Port

OPCODES

Handshakes

35

Real-Time Systems Complexities - 35Jim Anderson

Notation
◆ bi: Portion of Ii not overlapped with

the execution of any previous
instruction (excluding handshake
delays).

◆ ei: Second-stage execution time of Ii.

◆ ηi: Execution time of Ii excluding
memory accesses.

◆ fi: Number of bytes in the instruction
buffer at the moment Ii completes
execution.

◆ gi: Number of bytes of opcode fetched
during the time Ii is in the execute
stage of the pipeline, assuming the
buffer is of infinite size.

◆ hi: Time spent in fetching the latest byte of
the instruction-fetch operation if there is
an instruction ongoing at time τi.

◆ m: Number of CPU cycles for a memory
access.

◆ Nbuff: Size of the instruction-fetch buffer
in bytes.

◆ vi: Size of instruction i opcode in bytes.

◆ ri: Number of data memory reads required
by Ii.

◆ ti: Execution time of Ii not overlapped
with execution of any previous instruction
(including handshake delays).

◆ τi: Instant at which Ii completes.

◆ wi: Number of data memory writes
required by Ii.

36

Real-Time Systems Complexities - 36Jim Anderson

Expressions for ti and ei

By our assumptions concerning handshake costs,

ti =

To compute bi, we need an expression for ei. This is easy:

ei = ηi + m(ri + wi).

bi if (ri = 0) and (wi = 0)
bi + 1 if ((ri ≠ 0) and (wi = 0)) or ((ri = 0) and (wi ≠ 0))
bi + 2 if (ri > 0) and (wi > 0).

37

Real-Time Systems Complexities - 37Jim Anderson

Expression for bi
There are several cases:

Case b1: vi > fi-1. (vi − fi-1) bytes of the Ii opcode still need to be fetched at
time τi-1, when Ii-1 finishes executing. This will take a further m(vi − fi-1) − hi-1 time.

Case b2: vi ≤ fi-1. The entire Ii opcode has been fetched. Two subcases:

Case b2.1: (ri + wi = 0) or (hi-1 = 0). No time needs to be added for memory
access.

Case b2.2: (ri + wi > 0) and (hi-1 > 0). Ii needs to read/write some operands.
However, since hi-1 > 0, until m − hi-1 cycles after Ii has started executing, the
instruction-fetch unit is going to be accessing memory. It is only after that time
that any operand reads or writes can be started. In the worst case, this time
must be added to the execution time.

Thus, bi =
ei + m(vi − fi-1) − hi-1 if Case b1 applies
ei if Case b2.1 applies
ei + m − hi-1 if Case b2.2 applies.

38

Real-Time Systems Complexities - 38Jim Anderson

Expression for gi
To finish, we need expressions for fi and hi. First, we compute an
expression for gi. Once again, there are several cases.

Case g1: ri + wi = 0. The execution of Ii will not interfere with any opcode fetches.
There are three subcases:

Case g1.1: (vi ≤ fi-1) and (hi-1 > 0) and (ei < m − hi-1). All the opcode of Ii has
been fetched by τi-1, but there is not enough time for the ongoing opcode fetch to
finish by the time Ii finishes execution. Thus, gi = 0.

Case g1.2: (vi ≤ fi-1) and (hi-1 > 0) and (ei ≥ m − hi-1). All the opcode of Ii has been
fetched by τi-1, and the opcode fetch that was ongoing when Ii started execution
will have time to finish and will be followed by subsequent fetches. The no. of
these subsequent fetches is (ei − (m − hi-1))/m. Thus, gi = 1 + (ei − (m − hi-1))/m.

Case g1.3: (vi > fi-1) or (hi-1 = 0). Either some of the opcode of Ii hasn’t been
fetched by time τi-1, or there is no ongoing opcode fetch at time τi-1. In either
case, the no. of bytes of opcode fetched during Ii execution is given by gi = ei/m.

39

Real-Time Systems Complexities - 39Jim Anderson

Expression for gi (Continued)

Case g2: ri + wi > 0. Ii needs to access memory during its execution. Recall that
the second stage of the pipeline has nonpreemptive priority over the first for memory
access. There are two subcases:

Case g2.1: (vi > fi-1) or (hi-1 = 0). When the execution of Ii begins, there is no
ongoing instruction fetch. Since ri + wi > 0, we will prevent the instruction-fetch
unit from prefetching any instructions lest that they interfere with the memory
operations of the second stage as it executes Ii. Hence, gi = 0.

Case g2.2: (vi ≤ fi-1) and (hi-1 > 0) and (ei ≥ m − hi-1). The ongoing instruction
fetch at τi-1 will complete, but we will prevent any further prefetches by the first
stage for the reason mentioned in Case g2.1. Hence, gi = 1.

40

Real-Time Systems Complexities - 40Jim Anderson

Expression for fi

At τi-1, there are fi-1 bytes in the instruction buffer. Let the auxiliary
variable si be obtained by adding fi-1 and the number of bytes brought
in during the interval [τi-1, τi], assuming that the buffer is of infinite
size. Then,

si =

The equation for fi is

fi =

fi-1 + gi vi ≤ fi-1
vi + gi otherwise.

0 if i = 0
min{si, Nbuff} − vi if i > 0.

41

Real-Time Systems Complexities - 41Jim Anderson

Expression for hi

Once again, there are several cases.

Case h1: ri + wi > 0. Recall that in such a case, we do not allow any new
instruction fetches to start once any ongoing fetch at τi is done. No new instruction
fetches are begun. Hence, hi = 0.

Case h2: ri + wi = 0. There are four subcases.

Case h2.1: si ≥ Nbuff. Since the buffer is full, no new instruction fetches can be
started. Hence, hi = 0.

Case h2.2: (si < Nbuff) and ((hi-1 = 0) or (vi > fi-1)). If hi-1 = 0, there is no ongoing
instruction fetched at τi-1. If (vi > fi-1)) also, there is no ongoing instruction fetch
when Ii starts execution. This is because Ii begins execution the instant the last
byte of its opcode is brought into the buffer. In both cases, gi instruction fetches
are completed during the execution of Ii. Hence, hi = ei - mgi.

42

Real-Time Systems Complexities - 42Jim Anderson

Expression for hi (Continued)

Case h2.3: (si < Nbuff) and (hi-1 > 0) and (vi ≤ fi-1) and (ei < m − hi-1). The
ongoing instruction fetch at τi-1 does not have time to complete before Ii

completes. Hence, hi = ei + hi-1.

Case h2.4: (si < Nbuff) and (hi-1 > 0) and (vi ≤ fi-1) and (ei ≥ m − hi-1). It takes
m − hi-1 cycles to finish the instruction fetch that is ongoing at τi-1, and a further
mgi to finish the gi that complete during the execution of Ii. The time left over is
thus hi = ei − (m − hi-1) −mgi.

That’s it! (And remember, we made a lot of simplifying
assumptions in this analysis!)

43

Real-Time Systems Complexities - 43Jim Anderson

Example
Consider the following straight-line code sequence:

Instruction ηi vi ri wi

I1 10 2 0 0
I2 4 1 0 0
I3 10 3 0 0
I4 2 2 2 0
I5 5 2 0 0

0 8 16 24 32 40 48 56 64

47 51

I1 I2 I3 I4 I5 I5

18 22

I1 I2

4734

I3 I4

51

I5

h1 h2 h3

If m = 4,
the the total
execution
cost is 56.

44

Real-Time Systems Complexities - 44Jim Anderson

Caches and Virtual Memory
◆ Caches are difficult to deal with for (at least) two

reasons:
• Conditional branches make it difficult to predict which

instructions and data will be needed next.
– Generally, it is harder to predict whether a data item will be in the cache

than whether an instruction will be in the cache.

• Preemptions can cause blocks brought into the cache to be
removed.
– Krishna & Shin describe a cache implementation that prevents this.

◆ Virtual memory causes too much uncertainty and is
rarely used in (hard) real-time applications.

• Let’s remember to check on this later in our discussion of
commercial real-time operating systems.

45

Real-Time Systems Complexities - 45Jim Anderson

What do Academics Do?

◆ In academia, we rarely have access to the kind of
timing analysis tools we should really be using.

◆ For our purposes, it usually suffices to use a
measurement loop to determine the execution cost
for a task T.

index := 1;
start_time := get_time();
while index < NUM_ITERATIONS do

T; /* execute the task to be tested */
index := index + 1

od;
end_time := get_time();
measured_time := end_time − start_time

46

Real-Time Systems Complexities - 46Jim Anderson

Measurement Loop Issues
◆ What should NUM_ITERATIONS be?

• Calls to get_time() introduce some error term ∆.
– Computer time doesn’t exactly track real time.

– Total get_time() error is ∆/NUM_ITERATIONS, which we can drive
below any threshold we want by selecting NUM_ITERATIONS
accordingly.

◆ Inaccuracy also arises from the loop code itself.
• We can either subtract this out by measuring a null loop, or just

not worry about (it’s probably negligible).

◆ The big problem with this method is that it ignores
pipelining and caching.

• We can add a “fudge factor” for this, but without an actual
tool, this is really black magic.

