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Clock-driven (or Static) Scheduling
(Baker and Shaw and Chapter 5 of Liu)

◆ Model assumed in this chapter:
» n periodic tasks T1,…,Tn.

» The “rest of the world” periodic model is assumed.

» Ti is specified by (φi, pi, ei, Di), where
• φi  is its phase,

• pi is its period,

• ei is its execution cost per job, and

• Di is its relative deadline.

• Will abbreviate as (pi,ei,Di) if φi=0, and (pi,ei) if φi=0 ∧ pi=Di.

» We also have aperiodic jobs that are released at arbitrary
times (later, we’ll consider sporadic jobs too).
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Schedule Table

◆ Our scheduler will schedule periodic jobs using a
static schedule that is computed offline and stored
in a table T.

»   T(tk) =

» For most of this chapter, we assume the table is given.

» Later, we consider one algorithm for producing the table.
• Note: This algorithm need not be highly efficient.

» We will schedule aperiodic jobs (if any are ready) in
intervals not used by periodic jobs.

Ti if Ti is to be scheduled at time tk

I if no periodic task is scheduled at time tk

4
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Static, Timer-driven Scheduling
/* H is the hyperperiod.  There are N “quanta” per hyperperiod */
Input: Stored schedule (tk, T(tk)) for k = 0, 1, …, N – 1

Task SCHEDULER:
set the next decision point i and table entry k to 0;
set the timer to expire at tk;
do forever

accept timer interrupt;
if an aperiodic job is executing, preempt it;
current task T = T(tk);
i := i + 1;
compute the next table entry k := i mod N;
set the timer to expire at i/N H + tk;
if the current task T is I then

let the job at the head of the aperiodic job queue execute;
else

let task T execute
fi
sleep

end SCHEDULER

We call a
schedule
produced by
this scheduler a
cyclic schedule.

These quanta
aren’t necessarily
uniform.

Although Liu doesn’t say this
explicitly, the assumption here
seems to be that T finishes
before the next interrupt.
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Example
Consider a system of four tasks, T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1)
T4 = (20, 2).

Consider the following static schedule:

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T3 T2 T2 T2 T2T4
schedule repeats

The first few table entries would be: (0, T1), (1, T3), (2, T2), (3.8, I),
(4, T1), … 
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Frames
◆ Let us refine this notion of scheduling…

◆ To keep the table small, we divide the time line into frames
and make scheduling decisions only at frame boundaries.
» Each job is executed as a procedure call that must fit within a

frame.

» Multiple jobs may be executed in a frame, but the table is only
examined at frame boundaries (the number of “columns” in the
table = the number of frames per hyperperiod).

» In addition to making scheduling decisions, the scheduler also
checks for various error conditions, like task overruns, at the
beginning of each frame.

◆ We let f denote the frame size.
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Frame Size Constraints

We want frames to be sufficiently long so that every job can execute
within a frame nonpreemptively.  So,

f ≥ max1≤i≤n(ei).

To keep table small, f should divide H.  Thus, for at least one task Ti,

pi/f − pi/f = 0.

Let F = H/f.  (Note: F is an integer.)  Each interval of length H is
called a major cycle.  Each interval of length f is called a minor cycle.
There are F minor cycles per major cycle.

8
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Frame Constraints (Continued)
We want the frame size to be sufficiently small so that between
the release time and deadline of every job, there is at least one frame.

• A job released “inside” a frame is not noticed by the scheduler until
  the next frame boundary.
• Moreover, if a job has a deadline “inside” frame k + 1, it essentially must
  complete execution by the end of frame k.

frame k frame k+1 frame k+2

t t+f t+2f t+3ft′ t′+Di t′+pi

Ti releases a job

Thus,     2f − gcd(pi, f) ≤ Di.
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Example
Consider a system of four tasks, T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1)
T4 = (20, 2).

By first constraint, f ≥ 2.

Hyperperiod is 20, so by second constraint, possible choices for f are
2, 4, 5, 10, and 20.

Only f = 2 satisfies the third constraint.  The following is a possible
cyclic schedule.

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T3 T2 T2 T2 T2T4
schedule repeats
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Job Slices
What do we do if the frame size constraints cannot be met?

Example: Consider T = {(4, 1), (5, 2, 7), (20, 5)}.  By first constraint,
f ≥ 5, but by third constraint, f ≤ 4!

Solution: “Slice” the task (20, 5) into subtasks, (20, 1), (20, 3), and
(20, 1).  Then, f = 4 works.  Here’s a schedule:

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T2 T3,1 T2 T3,3T3,2
schedule repeatsT2 T2
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Summary of Design Decisions

◆ Three design decisions:
» choosing a frame size,

» partitioning jobs into slices, and

» placing slices in frames.

◆ In general, these decisions cannot be made
independently.

◆ We will look at an algorithm for making these
decisions later.

12
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Pseudo-code for Cyclic Executive
Input: Stored schedule: L(k) for k = 0, 1, …, F − 1;
           Aperiodic job queue

Task CYCLIC_EXECUTIVE:
current time t := 0;  current frame k := 0;
do forever

accept clock interrupt at time t⋅f;
currentBlock := L(k);  t := t + 1;  k := t mod F;
if the last job is not completed, take appropriate action;
if any of the slices in currentBlock is not released, take appropriate action;
wake up the periodic task server to execute the slices in currentBlock;
sleep until the periodic task server completes;
while the aperiodic job queue is nonempty do

wake up the job at the head of the aperiodic job queue;
sleep until the aperiodic job completes;
remove the aperiodic job from queue;

od;
sleep until the next clock interrupt;

od
end CYCLIC_EXECUTIVE

The periodic task server
simply executes each slice
in currentBlock as a
procedure call.

I’m not really sure why
this check is needed —
each slice is just a
procedure call.
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Improving Response Times of
Aperiodic Jobs

◆ Intuitively, it makes sense to give hard real-time jobs
higher priority than aperiodic jobs.

◆ However, this may lengthen the response time of an
aperiodic job.

◆ Note that there is no point in completing a hard real-
time job early, as long as it finishes by its deadline.

hard aperiodic hardaperiodic

hard deadline is still met
but aperiodic job completes sooner

14
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Slack Stealing

◆ Let the total amount of time allocated to all the
slices scheduled in frame k be xk.

◆ Definition: The slack available at the beginning
of frame k is f − xk.

◆ Change to scheduler:
» If the aperiodic job queue is nonempty, let aperiodic

jobs execute in each frame whenever there is
nonzero slack.
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Example

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T2

schedule
repeatsT2T3 T4 T3

0                 4                 8                 12               16               20

A1  A3

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T2 T2T3 T4 T3

1.5 2.00.5
A2

some hard
real-time
jobs

some 
aperiodic
jobs

without
slack
stealing

with
slack
stealing

 

0                 4                 8                 12               16               20

T1 T1 T1 T1 T1T2 T2T3 T4 T3 
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Implementing Slack Stealing

◆ Use a pre-computed “initial slack” table.

» Initial slack depends only on static quantities.

◆ Use an interval timer to keep track of available
slack.

» Set the timer when an aperiodic job begins to run.  If
it goes off, must start executing periodic jobs.

» Problem: Most OSs do not provide sub-millisecond
granularity interval timers (as we shall see).

» So, to use slack stealing, temporal parameters must
be on the order of 100s of msecs. or secs.
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Scheduling Sporadic Jobs

◆ Sporadic jobs arrive at arbitrary times.

◆ They have hard deadlines.

◆ Implies we cannot hope to schedule every sporadic job.

◆ When a sporadic job arrives, the scheduler performs an
acceptance test to see if the job can be completed by
its deadline.

◆ We must ensure that a new sporadic job does not cause
a previously-accepted sporadic job to miss its deadline.

◆ We assume sporadic jobs are prioritized on an earliest-
deadline-first (EDF) basis.

18
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Acceptance Test
Let σ(i, k) be the initial total slack in frames i through k, where
1 ≤ i ≤ k ≤ F.  (This quantity only depends on periodic jobs.)

Suppose we are doing an acceptance test at frame t for a newly-arrived
sporadic job S with deadline d and execution cost e.

Suppose d occurs within frame l + 1, i.e., S must complete by the end
of frame l.

Compute the current total slack in frames t through l using

 σc(t, l) = σ (t, l) − ∑dk ≤ d(ek − ξk)

The sum is over previously-accepted sporadic jobs with equal or earlier
deadlines. ξk  is the amount of time already spent executing Sk before
frame t.



19

Real-Time Systems  Clock-Driven Scheduling -  19Jim Anderson

Acceptance Test (Continued)

if σc(t, l) < e then reject S
else

record σ  := σc(t, l) − e as S’s slack; 
for each previously-accepted sporadic task Sk with a deadline after d do

let σk denote the slack recorded for Sk;
if σk − e < 0 then reject S fi /* or else Sk will miss its deadline */

od
fi;
if didn’t reject S then accept it fi

We’ll specify the rest of the test “algorithmically”… 

To summarize, the scheduler must maintain the following data:
• pre-computed initial slack table σ(i, k);
• ξk  values to use at the beginning of the current frame t;
• the current slack σk of every accepted sporadic job Sk.

20
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Executing Sporadic Tasks
◆ Accepted sporadic jobs are executed like aperiodic

jobs in the original alg. (without slack stealing).
» Remember, when meeting a deadline is the main

concern, there is no need to complete a job early.

» One difference: The aperiodic job queue is in FIFO
order, while the sporadic job queue is in EDF order.

◆ Aperiodic jobs only execute when the sporadic job
queue is empty.
» As before, slack stealing could be used when executing

aperiodic jobs (in which case, some aperiodic jobs could
execute when the sporadic job queue is not empty).
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Practical Considerations

◆ Handling frame overruns.
» Main Issue: Should offending job be completed or aborted?

◆ Mode changes.
» During a mode change, the running set of tasks is replaced by

a new set of tasks (i.e., the table is changed).

» Can implement mode change by having an aperiodic or
sporadic mode-change job.  (If sporadic, what if it fails the
acceptance test???)

◆ Multiprocessors.
» Like uniprocessors, but table probably takes longer to pre-

compute.

22
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Network Flow Algorithm for
Computing Static Schedules

Initialization: Compute all frame sizes in accordance with the 
second two frame-size constraints:

 pi/f − pi/f = 0 2f − gcd(pi, f) ≤ Di

At this point, we ignore the first constraint, f ≥ max1≤i≤n(ei).  Recall
this is the constraint that can force us to “slice” a task into subtasks.

Iterative Algorithm: For each possible frame size f, we compute a
network flow graph and run a max-flow algorithm.  If the flow thus
found has a certain value, then we have a schedule.
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Flow Graph

◆ Denote all jobs in the major cycle of F frames as
J1, J2, …, JN.

◆ Vertices:
» N job vertices, denoted J1, J2, …, JN.

» F frame vertices, denoted 1, 2, …, F.

» source and sink.

◆ Edges:
» (Ji, j) with capacity f iff Ji can be scheduled in frame j.

» (source, Ji) with capacity ei.

» (f, sink) with capacity f.

24

Real-Time Systems  Clock-Driven Scheduling -  24Jim Anderson

Illustration of Flow Graph
Frames

M

M

Jobs

source sink

Ji

Jk

x

y

z

F

ei

ek

f

f

f

f

f

f

f

f
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Finding a Schedule

◆ The maximum attainable flow value is clearly
∑i=1,…,N ei.  This corresponds to the exact
amount of computation to be scheduled in the
major cycle.

◆ If a max flow is found with value ∑i=1,…,N ei,
then we have a schedule.

◆ If a job is scheduled across multiple frames,
then we must slice it into corresponding
subjobs.
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Example
Frames

M

M

Jobs

source sink

Ji

Jk

x

y

z

F

ei/ei

h/f

(ei − h)/f

ek/f

0/f

0/f

0/f

(ei+ek− h)/f

h/f

ek/ek

This flow is telling us to slice Ji into two
subjobs, one with execution cost h that is
scheduled in frame x, and one with
execution cost (ei − h) that is scheduled in
frame y.  Jk remains as one job and is
scheduled in frame y.
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Non-independent Tasks

◆ Tasks with precedence constraints are no
problem.
» We can enforce precedence constraint like “Ji precedes Jk” by

simply making sure Ji’s release is at or before Jk’s release, and
Ji’s deadline is at or before Jk’s deadline.

» If slices of Ji and Jk are scheduled in the wrong order, we can
just swap them.

◆ Critical sections pose a greater challenge.
» We can try to “massage” the flow-network schedule into one

where nonpreemption constraints are respected.

» Unfortunately, there is no known efficient, optimal algorithm
for doing this (the problem is actually NP-hard).
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Pros and Cons of Cyclic Executives

◆ Main Advantage: CEs are very simple  you just
need a table.
» For example, additional mechanisms for concurrency

control and synchronization are not needed.  In fact,
there’s really no notion of a “process” here  just
procedure calls.

» Can validate, test, and certify with very high confidence.

» Certain anomalies will not occur.

» For these reasons, cyclic executives are the predominant
approach in many safety-critical applications (like
airplanes).



29

Real-Time Systems  Clock-Driven Scheduling -  29Jim Anderson

Aside: Scheduling Anomalies
(Section 4.8.1 of Liu)

Here’s an example: On a multiprocessor, decreasing a job’s execution
cost can increase some job’s response time.

Example:  Suppose we have one job queue, preemption, but no migration.

       ri      di    ei

J1 0 10 5
J2 0 10 6
J3 4 15 8
J4 0 20 10

Priority order:
J1 J2  J3 J4

P1

P2

J1 J3

J2 J4

all
deadlines
are met

P1

P2

J1

J3J2 J4

Now, decrease e2 to 3 … 

J4

20

20

J4 misses
its 
deadline!
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Pros and Cons (Continued)
◆ Disadvantages of cyclic executives:

» Very brittle: Any change, no matter how trivial, requires that a

new table be computed!

» Release times of all jobs must be fixed, i.e., “real-world”

sporadic tasks are difficult to support.

» Temporal parameters essentially must be multiples of f.

» F could be huge!

» All combinations of periodic tasks that may execute together

must a priori be analyzed.

» From a software engineering standpoint, “slicing” one procedure

into several could be error-prone.


