Real-Time Systems

CSCE 990

Clock-Driven Scheduling

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/Real TimeSystems

Clock-Driven Scheduling - 1

Real-Time Systems

Jim Anderson

Clock-driven (or Static) Scheduling

(Baker and Shaw and Chapter 5 of Liu)

0 Model assumed in this chapter:
» n periodic tasks ..., T,.
» The “rest of the world” periodic model is assumed.
» T, is specified by, p, g, D), where
* @ is its phasg
* pj is its period
* g is its_execution cogter job, and
« D, is its relative deadline
« Will abbreviate as (p|,D,) if @=0, and (pe) if ¢=00p=D,.
» We also have aperiodic jobs that are released at arbi
times (later, we’ll consider sporadic jobs to0o0).

trary

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 2

Schedule Table Static, Timer-driven Scheduling

. . - . /* H isthe hyperperiod. There are N “quanta” per hyperperiodeAH These quanta
0 Our scheduler will schedule peri odic J obs usi nga Input: Stored schedule,(tT(t)) for k=0, 1, ..., N -1 aren't necessaril
static schedule that is computed offline and stored Task SCHEDULER: uniform.
= - set the next decision point i and table entry k to 0;
inatableT. set the timer to expire gt t
do forever
T T, if T, isto be scheduled at time t, ?;CCGPI timegimegumi Wecal a
= . e - . odic job i ting, tit;
» T =71 it no periodic task is scheduled at timet, et 5 iOT‘;;S SN A ;gzﬂlé'; by
i=i+1; n
K . . ! . this scheduler a
» For most of this chapter, we assume the table is given. compute the next table entry k := i mod N; ;
. P X . 9 set the timer to expire &INCH + t; cydlic schedule.
» Later, we consider one algorithm for producing the tgble. if the current task T isthen
. . . -, let the job at the head of th iodic job Lute;
* Note: This algorithm need not be highly efficient. e,seet ¢ Job at the head of e aperiodlc Job queus exegue:
. .)) let task T executee] Although Liu doesn'’t say this

» We will schedule aperiodic jobs (if any are ready) in . explicitly, the assumption here]

H : i~ be that T finishes

intervals not used by periodic jobs. sleep seems fo be thal

y p J end SCHEDULER before the next interrupt.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 3

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 4

Example

Consider asystem of four tasks, T, = (4, 1), T, = (5, 1.8), T;= (20, 1)
T,=(20,2).

Consider the following static schedule:

| |
T A T.TT schedule repeats
0 4 8 12 16 20

Thefirst few table entrieswould be: (0, T,), (1, Ty), (2, T,), (3.8, 1),
4,T), ...

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 5

Frames
O Let us refine this notion of scheduling...

0 To keep the table small, we divide the time line finsmes
and make scheduling decisions only at frame boundarie

» Each job is executed as a procedure call that must fit within a
frame.

» Multiple jobs may be executed in a frame, but the table is only
examined at frame boundaries (the number of “columns” in the
table = the number of frames per hyperperiod).

» In addition to making scheduling decisions, the scheduler alsg
checks for various error conditions, like task overratshe
beginning of each frame.

0 Welet f denote the frame size.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 6

Frame Size Constraints

We want frames to be sufficiently long so that every job can execute
within aframe nonpreemptively. So,

To keep table small, f should divide H. Thus, for at least onetask T;,

b/ p/f = 0.

Let F=H/f. (Note: Fisaninteger.) Eachinterval of lengthH is
caled amajor cycle. Eachinterva of length f is called aminor cycle.
There are F minor cycles per mgjor cycle.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 7

Frame Constraints (Continued)

We want the frame size to be sufficiently small so that between
the release time and deadline of every job, thereis at least one frame.
« A job released “inside” a frame is not noticed by the scheduler until
the next frame boundary.
* Moreover, if a job has a deadline “inside” frame k + 1, it essentially must
complete execution by the end of frame k.

framek frame k+1 frame k+2

t ot t+f t+2f U+4D; t+p, t+3f

T, relessesajob

Thus, |2f - gcd(p, f) < D,.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 8

Example

Consider asystem of four tasks, T, = (4, 1), T, = (5, 1.8), T;= (20, 1)

T,=(20,2).
By first constraint, f = 2.

Hyperperiod is 20, so by second constraint, possible choices for f are

2,4,5, 10, and 20.

Only f = 2 satisfies the third constraint. The following isapossible

cyclic schedule.

schedule repeats

0 4 8 12 16

Jim Anderson Real-Time Systems

20

Clock-Driven Scheduling - 9

Job Slices

What do we do if the frame size constraints cannot be met?

Example: Consider T ={(4, 1), (5, 2, 7), (20, 5)}. By first constraint,
f =5, but by third constraint, f < 4!

Solution: “Slice” the task (20, 5) into subtasks, (20, 1), (20, 3), and
(20, 1). Then, f =4 works. Here's a schedule:

h T in g |T' i |T1 T, |T1 T EJ schedule repeats
T r T T Tl
8 12 16 20

[
0 4

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 10

10

Summary of Design Decisions

0 Three design decisions:
» choosing a frame size,
» partitioning jobs into slices, and
» placing slices in frames.

0 In general, these decisions cannot be made
independently.

0 Wewill look at an algorithm for making these
decisions later.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 11

11

Pseudo-code for Cyclic Executive

Input: Stored schedule: L(k) fork =0, 1, .../ FL;
Aperiodic job queue

Task CYCLIC_EXECUTIVE: I'm not really sure why
current time t := 0; current frame k := 0; this check is needed —
do forever each slice is just a

accept clock interrupt at timéit procedure call.
currentBlock := L(k); t:=t+1; k:=tmod F;
if the last job is not completed, take appropriate actjod;

if any of the slices in currentBlock is not released, take appropriate g

wake up the periodic task server to execute the slices in currentBlocf;

sleep until the periodic task server completes;

while the aperiodic job queue is nonemgty
wake up the job at the head of the aperiodic job qugue;
sleep until the aperiodic job completes;

Ltion;

remove the aperiodic job from queu
od;
sleep until the next clock interrupt;

The periodic task server
simply executes each slice
in currentBlock asa
procedurecall.

end CYCLIC_EXECUTIVE

Jim Anderson Real-Time Systems Clock-Driven Scheduling -

12

12

Improving Response Times of
Aperiodic Jobs

O Intuitively, it makes sense to give hard real-time jobs
higher priority than aperiodic jobs.

0 However, this may lengthen the response time of an
aperiodic job.

| |
[hard \aperiodic\| [aperiodic] hard |

hard deadlineis still met
but aperiodic job completes sooner

0 Notethat thereisno point in completing a hard real-
timejob early, aslong asit finishes by itsdeadline.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 13

13

Slack Stealing

O Let thetotal amount of time allocated to all the
slices scheduled in frame k be x,.

0 Definition: The slack available at the beginning
of framekisf —x,.

0 Change to scheduler:

» If the aperiodic job queue is nonempty, let aperiodi
jobs execute in each frame whenever there is
nonzero slack.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 14

)

14

Example

some hard h I—‘ | schedule
real-time T, 1‘—1 ‘ ‘Ta‘ " 1‘— ‘T1‘ T"x ‘ repeats
0 4 8 12 16

|
20

16 20

T2 Tl Tl T |
L S B
16 20

jobs

some 15 05 2.
- A

aperiodic 2 ‘

jobs 0 4 8 12

without

slack |

steaing 0 4 8 12

with

slack 7.7

stealing 0 4 8 12

Jim Anderson Real-Time Systems

Clock-Driven Scheduling - 15

15

Implementing Slack Stealing

0 Use apre-computed “initial slack” table.
» Initial slack depends only on static quantities.
0 Useaninterval timer to keep track of available
dack.

» Set the timer when an aperiodic job begins to run.
it goes off, must start executing periodic jobs.

» Problem: Most OSs do not provide sub-millisecond
granularity interval timers (as we shall see).

» S0, to use slack stealing, temporal parameters mu
be on the order of 100s of msecs. or secs.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 16

16

Scheduling Sporadic Jobs

0 Sporadic jobs arrive at arbitrary times.
0 They have hard deadlines.

0 Implies we cannot hope to schedule every sporadic job.
0 When a sporadic job arrives, the scheduler performs an
acceptance test to seeif the job can be completed by

itsdeadline.
0 We must ensure that a new sporadic job does not cause
a previously-accepted sporadic job to missits deadline.

0 We assume sporadic jobs are prioritized on an earliest-
deadline-first (EDF) basis.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 17

17

Acceptance Test

Let a(i, k) betheinitia total lack in framesi through k, where
1<i<k<F. (Thisquantity only dependson periodic jobs.)

Suppose we are doing an acceptance test at framet for a newly-arrived
sporadic job Swith deadline d and execution cost e.

Suppose d occurs within frame 7 + 1, i.e., S must complete by the end
of frame /.

Compute the current total slack in framest through ¢ using
Ot) =0 (L, £) = 3g <al® ~ &)

The sum is over previously-accepted sporadic jobs with equal or earlier

deadlines. &, isthe amount of time already spent executing S, before
framet.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 18

18

Acceptance Test (Continued)

We'll specify the rest of the test “algorithmically”...

if o(t, /) < ethen reject S
else
record 0 :=0(t, /) — easS's slack;
for each previously-accepted sporadic taswigh a deadline after do
let o, denote the slack recorded fqr S

if o, — e < Othen reject Sfi /* or else will miss its deadline */
od

fi;
if didn’t reject Xhen accept iffi

To summarize, the scheduler must maintain the following data
« pre-computed initial slack tabti, k);
« &, values to use at the beginning of the current frame t;
« the current slacky, of every accepted sporadic jop S

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 19

19

Executing Sporadic Tasks

o0 Accepted sporadic jobs are executed like aperiodic
jobsintheorigina ag. (without slack stealing).
» Remember, when meeting a deadline is the main
concern, there is no need to complete a job early.
» Onedifference: The aperiodic job queue is in FIFO
order, while the sporadic job queue is in EDF order.
0 Aperiodic jobs only execute when the sporadic job
gueue is empty.
» As before, slack stealing could be used when execut
aperiodic jobs (in which case, some aperiodic jobs ¢
execute when the sporadic job queue is not empty).

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 20

20

Practical Considerations

0 Handling frame overruns.
» Main Issue: Should offending job be completed or aborted?

0 Mode changes.
» During a mode change, the running set of tasks is replaced
a new set of tasks (i.e., the table is changed).

» Can implement mode change by havingperiodic or
sporadic mode-changejob. (If sporadic, what if it fails the
acceptance test???)

0 Multiprocessors.
» Like uniprocessors, but table probably takes longer to pre-
compute.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 21

by

21

Network Flow Algorithm for
Computing Static Schedules

Initialization: Compute all frame sizes in accordance with the

second two frame-size constraints:
p/f0-p/f =0 2f —ged(p;, f) < D,

At this point, we ignore the first constraint, f > max,;.(g). Recall

thisisthe constraint that can force usto “slice” a task into subtasks.

Iterative Algorithm: For each possible frame size f, we compute
network flow graph and run a max-flow algorithm. If the flow thy
found has a certain value, then we have a schedule.

Y

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 22

22

Flow Graph

0 Denote all jobsin the mgjor cycle of F frames as
NN SN W
0 Vertices.
» N job vertices, denoted JJ J,, ..., J,.
» Fframe vertices, denoted 1, 2, ..., F.
» source andsink.

0 Edges:

» (J, j) with capacity f iff Jcan be scheduled in frame |.

» (source, J with capacity g
» (f, sink) with capacity f.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 23

23

source

Jim Anderson

[llustration of Flow Graph

Jobs Frames

Real-Time Systems Clock-Driven Scheduling - 24

24

Finding a Schedule

0 The maximum attainable flow valueis clearly
Yi=1..n & Thiscorrespondsto the exact
amount of computation to be scheduled in the
major cycle.

0 If amax flow isfound withvalue 3., 6,
then we have a schedule.

0 If ajob is scheduled across multiple frames,
then we must diceit into corresponding
subjobs.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 25

25

source

Thisflow istelling usto dlice J; into two
subjobs, onewith execution cost h that is
scheduled in frame x, and one with
execution cost (g - h) that is scheduled in
framey. J, remainsasonejob and is
scheduled in framey.

Jim Anderson Real-Time Systems

sink

Clock-Driven Scheduling - 26

26

Non-independent Tasks

0 Tasks with precedence constraints are no
problem.

» We can enforce precedence constraint likpracedes,J by
simply making sure;'$ release is at or beforgslrelease, and
J's deadline is at or beforg’s deadline.

» If slices of Jand J are scheduled in the wrong order, we can
just swapthem.

o Critical sections pose a greater challenge.

» We can try to “massage” the flow-network schedule into ong
where nonpreemption constraints are respected.

» Unfortunately, there is no known efficient, optimal algorithm
for doing this (the problem is actually NP-hard).

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 27

27

Pros and Cons of Cyclic Executives

0 Main Advantage: CEsarevery smple d you just
need atable.

» For example, additional mechanisms for concurrenc
control and synchronization are not needed. In fact,
there’s really no notion of a “process” hétejust
procedure calls.

» Can validate, test, and certify with very high confide

» Certain anomalies will not occur.

» For these reasons, cyclic executives are the predon]
approach in many safety-critical applications (like
airplanes).

nce.

inant

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 28

28

Aside: Scheduling Anomalies Pros and Cons (Continued)

(Section 4.8.1 of Liu)

, _ . o 0 Disadvantages of cyclic executives:
Here's an example: On a multiprocessor, decreasing a job’s executjon
cost carincrease some job’s response time. » Very brittle: Any change, no matter how trivial, requires that a

. . . . new table be computed!
Example: Suppose we have one job queue, preemption, but no migration P

» Release times of all jobs must be fixed, i.e., “real-world”

_In_d e P [3] al sporadic tasks are difficult to support.

j; 8 ig g ! “ : “]‘7‘ ‘ i Ll ‘J‘A‘ L “ T deadiines » Temporal parameters essentially must be multiples of .

Ll 4 15 8 PZ““““""““““Z‘Oarema » F could be huge!

W 02010 Now, decrease,¢0 3 ... » All combinations of periodic tasks that may execute together

Priority order: 3] musta priori be analyzed.

Ak L A L i“]t“smi% » From a software engineering standpoint, “slicing” one procedure
P, 1 F]% @ T w‘]ﬁ T ‘\ T \JA\ % deadline! into several could be error-prone.

Jim Anderson Real-Time Systems Clock-Driven Scheduling - 29 Jim Anderson Real-Time Systems Clock-Driven Scheduling - 30

29

