
1

R
ea

l-
T

im
e

S
ys

te
m

s
 C

lo
ck

-D
ri

ve
n

S
ch

ed
ul

in
g

-
 1

Ji
m

 A
nd

er
so

n

C
S

C
E

 9
90

: R
ea

l-
T

im
e

Sy
st

em
s

C
lo

ck
-D

ri
ve

n
Sc

he
du

lin
g

St
ev

e
G

od
da

rd
go

dd
ar

d@
cs

e.
un

l.e
du

h
tt

p
:/

/w
w

w
.c

se
.u

nl
.e

du
/~

g
od

da
rd

/C
ou

rs
es

/R
ea

lT
im

eS
ys

te
m

s

2

Real-Time Systems Clock-Driven Scheduling - 2Jim Anderson

Clock-driven (or Static) Scheduling
(Baker and Shaw and Chapter 5 of Liu)

◆ Model assumed in this chapter:
» n periodic tasks T1,…,Tn.

» The “rest of the world” periodic model is assumed.

» Ti is specified by (φi, pi, ei, Di), where
• φi is its phase,

• pi is its period,

• ei is its execution cost per job, and

• Di is its relative deadline.

• Will abbreviate as (pi,ei,Di) if φi=0, and (pi,ei) if φi=0 ∧ pi=Di.

» We also have aperiodic jobs that are released at arbitrary
times (later, we’ll consider sporadic jobs too).

3

Real-Time Systems Clock-Driven Scheduling - 3Jim Anderson

Schedule Table

◆ Our scheduler will schedule periodic jobs using a
static schedule that is computed offline and stored
in a table T.

» T(tk) =

» For most of this chapter, we assume the table is given.

» Later, we consider one algorithm for producing the table.
• Note: This algorithm need not be highly efficient.

» We will schedule aperiodic jobs (if any are ready) in
intervals not used by periodic jobs.

Ti if Ti is to be scheduled at time tk

I if no periodic task is scheduled at time tk

4

Real-Time Systems Clock-Driven Scheduling - 4Jim Anderson

Static, Timer-driven Scheduling
/* H is the hyperperiod. There are N “quanta” per hyperperiod */
Input: Stored schedule (tk, T(tk)) for k = 0, 1, …, N – 1

Task SCHEDULER:
set the next decision point i and table entry k to 0;
set the timer to expire at tk;
do forever

accept timer interrupt;
if an aperiodic job is executing, preempt it;
current task T = T(tk);
i := i + 1;
compute the next table entry k := i mod N;
set the timer to expire at i/N H + tk;
if the current task T is I then

let the job at the head of the aperiodic job queue execute;
else

let task T execute
fi
sleep

end SCHEDULER

We call a
schedule
produced by
this scheduler a
cyclic schedule.

These quanta
aren’t necessarily
uniform.

Although Liu doesn’t say this
explicitly, the assumption here
seems to be that T finishes
before the next interrupt.

5

Real-Time Systems Clock-Driven Scheduling - 5Jim Anderson

Example
Consider a system of four tasks, T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1)
T4 = (20, 2).

Consider the following static schedule:

0 4 8 12 16 20

T1 T1 T1 T1 T1T3 T2 T2 T2 T2T4
schedule repeats

The first few table entries would be: (0, T1), (1, T3), (2, T2), (3.8, I),
(4, T1), …

6

Real-Time Systems Clock-Driven Scheduling - 6Jim Anderson

Frames
◆ Let us refine this notion of scheduling…

◆ To keep the table small, we divide the time line into frames
and make scheduling decisions only at frame boundaries.
» Each job is executed as a procedure call that must fit within a

frame.

» Multiple jobs may be executed in a frame, but the table is only
examined at frame boundaries (the number of “columns” in the
table = the number of frames per hyperperiod).

» In addition to making scheduling decisions, the scheduler also
checks for various error conditions, like task overruns, at the
beginning of each frame.

◆ We let f denote the frame size.

7

Real-Time Systems Clock-Driven Scheduling - 7Jim Anderson

Frame Size Constraints

We want frames to be sufficiently long so that every job can execute
within a frame nonpreemptively. So,

f ≥ max1≤i≤n(ei).

To keep table small, f should divide H. Thus, for at least one task Ti,

pi/f − pi/f = 0.

Let F = H/f. (Note: F is an integer.) Each interval of length H is
called a major cycle. Each interval of length f is called a minor cycle.
There are F minor cycles per major cycle.

8

Real-Time Systems Clock-Driven Scheduling - 8Jim Anderson

Frame Constraints (Continued)
We want the frame size to be sufficiently small so that between
the release time and deadline of every job, there is at least one frame.

• A job released “inside” a frame is not noticed by the scheduler until
 the next frame boundary.
• Moreover, if a job has a deadline “inside” frame k + 1, it essentially must
 complete execution by the end of frame k.

frame k frame k+1 frame k+2

t t+f t+2f t+3ft′ t′+Di t′+pi

Ti releases a job

Thus, 2f − gcd(pi, f) ≤ Di.

9

Real-Time Systems Clock-Driven Scheduling - 9Jim Anderson

Example
Consider a system of four tasks, T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1)
T4 = (20, 2).

By first constraint, f ≥ 2.

Hyperperiod is 20, so by second constraint, possible choices for f are
2, 4, 5, 10, and 20.

Only f = 2 satisfies the third constraint. The following is a possible
cyclic schedule.

0 4 8 12 16 20

T1 T1 T1 T1 T1T3 T2 T2 T2 T2T4
schedule repeats

10

Real-Time Systems Clock-Driven Scheduling - 10Jim Anderson

Job Slices
What do we do if the frame size constraints cannot be met?

Example: Consider T = {(4, 1), (5, 2, 7), (20, 5)}. By first constraint,
f ≥ 5, but by third constraint, f ≤ 4!

Solution: “Slice” the task (20, 5) into subtasks, (20, 1), (20, 3), and
(20, 1). Then, f = 4 works. Here’s a schedule:

0 4 8 12 16 20

T1 T1 T1 T1 T1T2 T3,1 T2 T3,3T3,2
schedule repeatsT2 T2

11

Real-Time Systems Clock-Driven Scheduling - 11Jim Anderson

Summary of Design Decisions

◆ Three design decisions:
» choosing a frame size,

» partitioning jobs into slices, and

» placing slices in frames.

◆ In general, these decisions cannot be made
independently.

◆ We will look at an algorithm for making these
decisions later.

12

Real-Time Systems Clock-Driven Scheduling - 12Jim Anderson

Pseudo-code for Cyclic Executive
Input: Stored schedule: L(k) for k = 0, 1, …, F − 1;
 Aperiodic job queue

Task CYCLIC_EXECUTIVE:
current time t := 0; current frame k := 0;
do forever

accept clock interrupt at time t⋅f;
currentBlock := L(k); t := t + 1; k := t mod F;
if the last job is not completed, take appropriate action;
if any of the slices in currentBlock is not released, take appropriate action;
wake up the periodic task server to execute the slices in currentBlock;
sleep until the periodic task server completes;
while the aperiodic job queue is nonempty do

wake up the job at the head of the aperiodic job queue;
sleep until the aperiodic job completes;
remove the aperiodic job from queue;

od;
sleep until the next clock interrupt;

od
end CYCLIC_EXECUTIVE

The periodic task server
simply executes each slice
in currentBlock as a
procedure call.

I’m not really sure why
this check is needed —
each slice is just a
procedure call.

13

Real-Time Systems Clock-Driven Scheduling - 13Jim Anderson

Improving Response Times of
Aperiodic Jobs

◆ Intuitively, it makes sense to give hard real-time jobs
higher priority than aperiodic jobs.

◆ However, this may lengthen the response time of an
aperiodic job.

◆ Note that there is no point in completing a hard real-
time job early, as long as it finishes by its deadline.

hard aperiodic hardaperiodic

hard deadline is still met
but aperiodic job completes sooner

14

Real-Time Systems Clock-Driven Scheduling - 14Jim Anderson

Slack Stealing

◆ Let the total amount of time allocated to all the
slices scheduled in frame k be xk.

◆ Definition: The slack available at the beginning
of frame k is f − xk.

◆ Change to scheduler:
» If the aperiodic job queue is nonempty, let aperiodic

jobs execute in each frame whenever there is
nonzero slack.

15

Real-Time Systems Clock-Driven Scheduling - 15Jim Anderson

Example

0 4 8 12 16 20

T1 T1 T1 T1 T1T2

schedule
repeatsT2T3 T4 T3

0 4 8 12 16 20

A1 A3

0 4 8 12 16 20

T1 T1 T1 T1 T1T2 T2T3 T4 T3

1.5 2.00.5
A2

some hard
real-time
jobs

some
aperiodic
jobs

without
slack
stealing

with
slack
stealing

0 4 8 12 16 20

T1 T1 T1 T1 T1T2 T2T3 T4 T3

16

Real-Time Systems Clock-Driven Scheduling - 16Jim Anderson

Implementing Slack Stealing

◆ Use a pre-computed “initial slack” table.

» Initial slack depends only on static quantities.

◆ Use an interval timer to keep track of available
slack.

» Set the timer when an aperiodic job begins to run. If
it goes off, must start executing periodic jobs.

» Problem: Most OSs do not provide sub-millisecond
granularity interval timers (as we shall see).

» So, to use slack stealing, temporal parameters must
be on the order of 100s of msecs. or secs.

17

Real-Time Systems Clock-Driven Scheduling - 17Jim Anderson

Scheduling Sporadic Jobs

◆ Sporadic jobs arrive at arbitrary times.

◆ They have hard deadlines.

◆ Implies we cannot hope to schedule every sporadic job.

◆ When a sporadic job arrives, the scheduler performs an
acceptance test to see if the job can be completed by
its deadline.

◆ We must ensure that a new sporadic job does not cause
a previously-accepted sporadic job to miss its deadline.

◆ We assume sporadic jobs are prioritized on an earliest-
deadline-first (EDF) basis.

18

Real-Time Systems Clock-Driven Scheduling - 18Jim Anderson

Acceptance Test
Let σ(i, k) be the initial total slack in frames i through k, where
1 ≤ i ≤ k ≤ F. (This quantity only depends on periodic jobs.)

Suppose we are doing an acceptance test at frame t for a newly-arrived
sporadic job S with deadline d and execution cost e.

Suppose d occurs within frame l + 1, i.e., S must complete by the end
of frame l.

Compute the current total slack in frames t through l using

 σc(t, l) = σ (t, l) − ∑dk ≤ d(ek − ξk)

The sum is over previously-accepted sporadic jobs with equal or earlier
deadlines. ξk is the amount of time already spent executing Sk before
frame t.

19

Real-Time Systems Clock-Driven Scheduling - 19Jim Anderson

Acceptance Test (Continued)

if σc(t, l) < e then reject S
else

record σ := σc(t, l) − e as S’s slack;
for each previously-accepted sporadic task Sk with a deadline after d do

let σk denote the slack recorded for Sk;
if σk − e < 0 then reject S fi /* or else Sk will miss its deadline */

od
fi;
if didn’t reject S then accept it fi

We’ll specify the rest of the test “algorithmically”…

To summarize, the scheduler must maintain the following data:
• pre-computed initial slack table σ(i, k);
• ξk values to use at the beginning of the current frame t;
• the current slack σk of every accepted sporadic job Sk.

20

Real-Time Systems Clock-Driven Scheduling - 20Jim Anderson

Executing Sporadic Tasks
◆ Accepted sporadic jobs are executed like aperiodic

jobs in the original alg. (without slack stealing).
» Remember, when meeting a deadline is the main

concern, there is no need to complete a job early.

» One difference: The aperiodic job queue is in FIFO
order, while the sporadic job queue is in EDF order.

◆ Aperiodic jobs only execute when the sporadic job
queue is empty.
» As before, slack stealing could be used when executing

aperiodic jobs (in which case, some aperiodic jobs could
execute when the sporadic job queue is not empty).

21

Real-Time Systems Clock-Driven Scheduling - 21Jim Anderson

Practical Considerations

◆ Handling frame overruns.
» Main Issue: Should offending job be completed or aborted?

◆ Mode changes.
» During a mode change, the running set of tasks is replaced by

a new set of tasks (i.e., the table is changed).

» Can implement mode change by having an aperiodic or
sporadic mode-change job. (If sporadic, what if it fails the
acceptance test???)

◆ Multiprocessors.
» Like uniprocessors, but table probably takes longer to pre-

compute.

22

Real-Time Systems Clock-Driven Scheduling - 22Jim Anderson

Network Flow Algorithm for
Computing Static Schedules

Initialization: Compute all frame sizes in accordance with the
second two frame-size constraints:

 pi/f − pi/f = 0 2f − gcd(pi, f) ≤ Di

At this point, we ignore the first constraint, f ≥ max1≤i≤n(ei). Recall
this is the constraint that can force us to “slice” a task into subtasks.

Iterative Algorithm: For each possible frame size f, we compute a
network flow graph and run a max-flow algorithm. If the flow thus
found has a certain value, then we have a schedule.

23

Real-Time Systems Clock-Driven Scheduling - 23Jim Anderson

Flow Graph

◆ Denote all jobs in the major cycle of F frames as
J1, J2, …, JN.

◆ Vertices:
» N job vertices, denoted J1, J2, …, JN.

» F frame vertices, denoted 1, 2, …, F.

» source and sink.

◆ Edges:
» (Ji, j) with capacity f iff Ji can be scheduled in frame j.

» (source, Ji) with capacity ei.

» (f, sink) with capacity f.

24

Real-Time Systems Clock-Driven Scheduling - 24Jim Anderson

Illustration of Flow Graph
Frames

M

M

Jobs

source sink

Ji

Jk

x

y

z

F

ei

ek

f

f

f

f

f

f

f

f

25

Real-Time Systems Clock-Driven Scheduling - 25Jim Anderson

Finding a Schedule

◆ The maximum attainable flow value is clearly
∑i=1,…,N ei. This corresponds to the exact
amount of computation to be scheduled in the
major cycle.

◆ If a max flow is found with value ∑i=1,…,N ei,
then we have a schedule.

◆ If a job is scheduled across multiple frames,
then we must slice it into corresponding
subjobs.

26

Real-Time Systems Clock-Driven Scheduling - 26Jim Anderson

Example
Frames

M

M

Jobs

source sink

Ji

Jk

x

y

z

F

ei/ei

h/f

(ei − h)/f

ek/f

0/f

0/f

0/f

(ei+ek− h)/f

h/f

ek/ek

This flow is telling us to slice Ji into two
subjobs, one with execution cost h that is
scheduled in frame x, and one with
execution cost (ei − h) that is scheduled in
frame y. Jk remains as one job and is
scheduled in frame y.

27

Real-Time Systems Clock-Driven Scheduling - 27Jim Anderson

Non-independent Tasks

◆ Tasks with precedence constraints are no
problem.
» We can enforce precedence constraint like “Ji precedes Jk” by

simply making sure Ji’s release is at or before Jk’s release, and
Ji’s deadline is at or before Jk’s deadline.

» If slices of Ji and Jk are scheduled in the wrong order, we can
just swap them.

◆ Critical sections pose a greater challenge.
» We can try to “massage” the flow-network schedule into one

where nonpreemption constraints are respected.

» Unfortunately, there is no known efficient, optimal algorithm
for doing this (the problem is actually NP-hard).

28

Real-Time Systems Clock-Driven Scheduling - 28Jim Anderson

Pros and Cons of Cyclic Executives

◆ Main Advantage: CEs are very simple  you just
need a table.
» For example, additional mechanisms for concurrency

control and synchronization are not needed. In fact,
there’s really no notion of a “process” here  just
procedure calls.

» Can validate, test, and certify with very high confidence.

» Certain anomalies will not occur.

» For these reasons, cyclic executives are the predominant
approach in many safety-critical applications (like
airplanes).

29

Real-Time Systems Clock-Driven Scheduling - 29Jim Anderson

Aside: Scheduling Anomalies
(Section 4.8.1 of Liu)

Here’s an example: On a multiprocessor, decreasing a job’s execution
cost can increase some job’s response time.

Example: Suppose we have one job queue, preemption, but no migration.

 ri di ei

J1 0 10 5
J2 0 10 6
J3 4 15 8
J4 0 20 10

Priority order:
J1 J2 J3 J4

P1

P2

J1 J3

J2 J4

all
deadlines
are met

P1

P2

J1

J3J2 J4

Now, decrease e2 to 3 …

J4

20

20

J4 misses
its
deadline!

30

Real-Time Systems Clock-Driven Scheduling - 30Jim Anderson

Pros and Cons (Continued)
◆ Disadvantages of cyclic executives:

» Very brittle: Any change, no matter how trivial, requires that a

new table be computed!

» Release times of all jobs must be fixed, i.e., “real-world”

sporadic tasks are difficult to support.

» Temporal parameters essentially must be multiples of f.

» F could be huge!

» All combinations of periodic tasks that may execute together

must a priori be analyzed.

» From a software engineering standpoint, “slicing” one procedure

into several could be error-prone.

