
1

R
ea

l-
T

im
e

S
ys

te
m

s
 I

nt
ro

du
ct

io
n

-
 1

Ji
m

 A
nd

er
so

n

C
S

C
E

 9
90

: R
ea

l-
T

im
e

Sy
st

em
s

In
tr

od
uc

ti
on

St
ev

e
G

od
da

rd
go

dd
ar

d@
cs

e.
un

l.e
du

h
tt

p
:/

/w
w

w
.c

se
.u

nl
.e

du
/~

g
od

da
rd

/C
ou

rs
es

/R
ea

lT
im

eS
ys

te
m

s

2

Real-Time Systems Introduction - 2Jim Anderson

Real-time System

◆ A real-time system is a system whose
specification includes both logical and temporal
correctness requirements.
» Logical Correctness: Produces correct outputs.

• Can by checked, for example, by Hoare logic.

» Temporal Correctness: Produces outputs at the right
time.
• In this course, we spend much time on techniques for

checking temporal correctness.

• The question of how to specify temporal requirements, though
enormously important, is shortchanged in this course.

3

Real-Time Systems Introduction - 3Jim Anderson

Characteristics of Real-Time Systems

◆ Event-driven, reactive.

◆ High cost of failure.

◆ Concurrency/multiprogramming.

◆ Stand-alone/continuous operation.

◆ Reliability/fault-tolerance requirements.

◆ Predictable behavior.

4

Real-Time Systems Introduction - 4Jim Anderson

Misconceptions about Real-Time Systems
(Stankovic ‘88)

◆ There is no science in real-time-system design.
• We shall see…

◆ Advances in supercomputing hardware will take
care of real-time requirements.

• The old “buy a faster processor” argument…

◆ Real-time computing is equivalent to fast
computing.

• Only to ad agencies. To us, it means PREDICTABLE
computing.

5

Real-Time Systems Introduction - 5Jim Anderson

Misconceptions (Continued)
◆ Real-time programming is assembly coding, …

• We would like to automate (as much as possible) real-time
system design, instead of relying on clever hand-crafted code.

◆ “Real time” is performance engineering.
• In real-time computing, timeliness is almost always more

important than raw performance …

◆ “Real-time problems” have all been solved in other
areas of CS or operations research.

• OR people typically use stochastic queuing models or one-shot
scheduling models to reason about systems.

• CS people are usually interested in optimizing average-case
performance.

6

Real-Time Systems Introduction - 6Jim Anderson

Misconceptions (Continued)

◆ It is not meaningful to talk about guaranteeing
real-time performance when things can fail.

• Though things may fail, we certainly don’t want the
operating system to be the weakest link!

◆ Real-time systems function in a static
environment.

• Note true. We consider systems in which the operating
mode may change dynamically.

7

Real-Time Systems Introduction - 7Jim Anderson

Are All Systems Real-Time Systems?

◆ Question: Is a payroll processing system a real-
time system?
» It has a time constraint: Print the pay checks every

two weeks.

◆ Perhaps it is a real-time system in a definitional
sense, but it doesn’t pay us to view it as such.

◆ We are interested in systems for which it is not
a priori obvious how to meet timing constraints.

8

Real-Time Systems Introduction - 8Jim Anderson

The “Window of Scarcity”

◆ Resources may be categorized as:

» Abundant: Virtually any system design methodology can be
used to realize the timing requirements of the application.

» Insufficient: The application is ahead of the technology
curve; no design methodology can be used to realize the
timing requirements of the application.

» Sufficient but scarce: It is possible to realize the timing
requirements of the application, but careful resource
allocation is required.

9

Real-Time Systems Introduction - 9Jim Anderson

Example: Interactive/Multimedia
Applications

sufficient
but scarce
resources

abundant
resources

insufficient
resources

Requirements
(performance, scale)

1980 1990 2000

Hardware resources in year X

Remote
Login

Network
File Access

High-quality
Audio

Interactive
Video

The interesting
real-time
applications
are here

10

Real-Time Systems Introduction - 10Jim Anderson

Example Real-Time Applications
(Chapter 1 of Liu)

Many real-time systems are control systems.

Example 1: A simple one-sensor, one-actuator control system.

control-law
computation

A/D

A/D
D/A

sensor plant actuator

rk

yk

y(t) u(t)

uk

reference
input r(t)

The system
being controlled

11

Real-Time Systems Introduction - 11Jim Anderson

Simple Control System (Continued)

Pseudo-code for this system:

set timer to interrupt periodically with period T;
at each timer interrupt do

do analog-to-digital conversion to get y;
compute control output u;
output u and do digital-to-analog conversion;

od

T is called the sampling period. T is a key design choice. Typical
range for T: seconds to milliseconds.

12

Real-Time Systems Introduction - 12Jim Anderson

Multi-rate Control Systems
More complicated control systems have multiple sensors and actuators
and must support control loops of different rates.

Example 2: Helicopter flight controller.

Do the following in each 1/180-sec. cycle:
validate sensor data and select data source;
if failure, reconfigure the system

Every sixth cycle do:
keyboard input and mode selection;
data normalization and coordinate
 transformation;
tracking reference update
control laws of the outer pitch-control loop;
control laws of the outer roll-control loop;
control laws of the outer yaw- and
 collective-control loop

Every other cycle do:
control laws of the inner
 pitch-control loop;
control laws of the inner roll- and
 collective-control loop

Compute the control laws of the inner
 yaw-control loop;

Output commands;

Carry out built-in test;

Wait until beginning of the next cycle

Note: Having only harmonic rates simplifies the system.

13

Real-Time Systems Introduction - 13Jim Anderson

Hierarchical Control Systems
Example 3:
Air traffic-flight
control hierarchy.

state
estimator

state
estimator

state
estimator

−

−

−

air traffic
control

flight
management

flight
control

air data

navigation

virtual plant

virtual plant

operator-system
interface

physical plant

from sensors

responses commands sampling
rates may
be minutes
or even
hours

sampling
rates may
be secs.
or msecs.

14

Real-Time Systems Introduction - 14Jim Anderson

Signal-Processing Systems

◆ Signal-processing systems transform data from
one form to another.

◆ Examples:
» Digital filtering.

» Video and voice compression/decompression.

» Radar signal processing.

◆ Response times range from a few milliseconds
to a few seconds.

15

Real-Time Systems Introduction - 15Jim Anderson

DSP

Example: Radar System

radar
memory

DSPDSP

signal
processors

data
processor

track
records

track
records

signal
processing
parameters

control
status

sampled
digitized

data

16

Real-Time Systems Introduction - 16Jim Anderson

Other Real-Time Applications

◆ Real-time databases.
• Transactions must complete by deadlines.

• Main dilemma: Transaction scheduling algorithms and real-
time scheduling algorithms often have conflicting goals.

• Data may be subject to absolute and relative temporal
consistency requirements.

◆ Multimedia.
• Want to process audio and video frames at steady rates.

– TV video rate is 30 frames/sec. HDTV is 60 frames/sec.

– Telephone audio is 16 Kbits/sec. CD audio is 128 Kbits/sec.

• Other requirements: Lip synchronization, low jitter, low
end-to-end response times (if interactive).

17

Real-Time Systems Introduction - 17Jim Anderson

Hard vs. Soft Real Time
(Chapter 2 of Liu)

» Task: A sequential piece of code.

» Job: Instance of a task.

» Jobs require resources to execute.
– Example resources: CPU, network, disk, critical section.

– We will simply call all hardware resources “processors”.

» Release time of a job: The time instant the job becomes
ready to execute.

» Deadline of a job: The time instant by which the job must
complete execution.

» Relative deadline of a job: “Deadline − Release time”.

» Response time of a job: “Completion time − Release time”.

18

Real-Time Systems Introduction - 18Jim Anderson

Example

= job release

= job deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Job is released at time 3.
It’s (absolute) deadline is at time 10.
It’s relative deadline is 7.
It’s response time is 6.

19

Real-Time Systems Introduction - 19Jim Anderson

Hard Real-Time Systems

◆ A hard deadline must be met.
» If any hard deadline is ever missed, then the system is

incorrect.
» Requires a means for validating that deadlines are met.

◆ Hard real-time system: A real-time system in
which all deadlines are hard.
» We mostly consider hard real-time systems in this

course.

◆ Examples: Nuclear power plant control, flight
control.

20

Real-Time Systems Introduction - 20Jim Anderson

Soft Real-Time Systems

◆ A soft deadline may occasionally be missed.

» Question: How to define “occasionally”?

◆ Soft real-time system: A real-time system in

which some deadlines are soft.

◆ Examples: Telephone switches, multimedia

applications.

21

Real-Time Systems Introduction - 21Jim Anderson

Defining “Occasionally”

◆ One Approach: Use probabilistic requirements.
» For example, 99% of deadlines will be met.

◆ Another Approach: Define a “usefulness”
function for each job:

◆ Note: Validation is trickier here.

1

0
relative
deadline

22

Real-Time Systems Introduction - 22Jim Anderson

Firm Deadlines

◆ Firm deadline: A soft deadline such that the
corresponding job’s usefulness function goes to
0 as soon as the deadline is reached (late jobs
are of no use).

◆ Firm deadlines are not considered in Liu’s book.

1

0
relative
deadline

23

Real-Time Systems Introduction - 23Jim Anderson

Reference Model
(Chapter 3 of Liu)

◆ Each job Ji is characterized by its release time ri,
absolute deadline di, relative deadline Di, and
execution time ei.

◆ Sometimes a range of release times is specified:
[ri

−, ri
+]. This range is called release-time jitter.

◆ Likewise, sometimes instead of ei, execution time
is specified to range over [ei

−, ei
+].

» Note: It can be difficult to get a precise estimate of ei

(more on this later).

24

Real-Time Systems Introduction - 24Jim Anderson

Periodic, Sporadic, Aperiodic Tasks
(Or, let the terminology wars begin…)

◆ Periodic task:
» We associate a period pi with each task Ti.

» pi is the minimum time between job releases.

◆ Sporadic and aperiodic tasks: Released at
arbitrary times.
» Sporadic: Has a hard deadline.

» Aperiodic: Has no deadline or a soft deadline.

25

Real-Time Systems Introduction - 25Jim Anderson

Warning!

◆ What Liu calls “periodic”, the rest of the world
calls “sporadic”.

◆ In the rest of the world, the period pi of a
periodic task Ti gives the exact spacing between
job releases.

26

Real-Time Systems Introduction - 26Jim Anderson

Examples

= job release = job deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A periodic task Ti with ri = 2, pi = 5, ei = 2, Di =5 executes like this
according to the rest of the world:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

According to Liu, it could execute like this:

To the rest of the world, this is a sporadic task.

27

Real-Time Systems Introduction - 27Jim Anderson

Some Definitions for Periodic Task Sys.

◆ The jobs of task Ti are denoted Ji,1, Ji,2, … .

◆ ri,1 (the release time of Ji,1) is called the phase of Ti.

» Synchronous System: Each task has a phase of 0.

» Asynchronous System: Phases are arbitrary.

◆ Hyperperiod: Least common multiple of {pi}.

◆ Task utilization: ui = ei/pi.

◆ System utilization: U = ∑i=1..nui.

28

Real-Time Systems Introduction - 28Jim Anderson

Task Dependencies

◆ Two main kinds of dependencies:
» Critical Sections.

» Precedence Constraints.
• For example, job Ji may be constrained to be released only

after job Jk completes.

◆ Tasks with no dependencies are called
independent.
» In the first half of the course, we will consider only

independent tasks.

29

Real-Time Systems Introduction - 29Jim Anderson

Scheduling Algorithms

◆ We are generally interested in two kinds of
algorithms:
1 A scheduler or scheduling algorithm, which

generates a schedule at runtime.

2 A feasibility analysis algorithm, which checks if
timing constraints are met.

< Usually (but not always) Algorithm 1 is pretty
straightforward, while Algorithm 2 is more
complex.

30

Real-Time Systems Introduction - 30Jim Anderson

Classification of Scheduling Algorithms

All scheduling algorithms

static scheduling
(or offline, or clock driven)

dynamic scheduling
(or online, or priority driven)

static-priority
scheduling

dynamic-priority
scheduling

31

Real-Time Systems Introduction - 31Jim Anderson

Optimality and Feasibility
◆ A schedule is feasible if all timing constraints

are met.
• The term “correct” is probably better — see the next slide.

◆ A task set T is schedulable using scheduling
algorithm A if A always produces a feasible
schedule for T.

◆ A scheduling algorithm is optimal if it always
produces a feasible schedule when one exists
(under any scheduling algorithm).

• Can similarly define optimality for a class of schedulers,
e.g., “an optimal static-priority scheduling algorithm.”

32

Real-Time Systems Introduction - 32Jim Anderson

Feasibility versus Schedulability

Algorithm for
Checking FeasibilityTask Set T

T is schedulable

T is not schedulable

Algorithm for
Checking SchedulabilityTask Set T T is schedulable

To most people in real-time community, the term “feasibility” is
used to refer to an exact schedulability test, while the term
“schedulability” is used to refer to a sufficient schedulability test.

You may find that these terms are used somewhat inconsistently in
the papers we read.

33

Real-Time Systems Introduction - 33Jim Anderson

Real-Time Research Repository

◆ For information on real-time research groups,
conferences, journals, books, products, etc.,
have a look at:

» http://cs-www.bu.edu/pub/ieee-rts/Home.html

