JDEP 284H **Foundations of Computer Systems** # Introduction to Computer Systems Dr. Steve Goddard goddard @cse.unl.edu http://cse.unl.edu/~goddard/Courses/JDEP284 ### Giving credit where credit is due - Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University. - Some examples and slides are based on lecture notes created by Dr. Shard Seth, IINI - I have modified them and added new slides. 2 ### **Topics** - ■Why do we care about this stuff? - **■**Course theme - Five great realities of computer systems - **■**Computer system overview 3 ### Why Do We Care... ### Rapidly changing field: - vacuum tube -> transistor -> IC -> VLSI - doubling every 1.5 years: memory capacity processor speed (Due to advances in technology and organization) ### Things you'll be learning: - how computers work, a basic foundation - how to analyze their performance (or how not to!) - issues affecting modern processors (caches, pipelines) ### Why learn this stuff? - you want to call yourself a "computer scientist" - you want to build software people use (need performance) - you need to make a purchasing decision or offer "expert" advice **Course Theme** ■ Abstraction is good, but don't forget reality! ### Courses to date emphasize abstraction - Abstract data types - Asymptotic analysis ### These abstractions have limits - Especially in the presence of bugs - Need to understand underlying implementations ### Useful outcomes - Become more effective programmers - Able to find and eliminate bugs efficiently Able to tune program performance - Able to tune program performance Prepare for later "systems" classes in CS & CE - Compilers, Operating Systems, Networks, Computer Architecture, Embedded Systems **Great Reality #1** Int's are not Integers, Float's are not Reals ### Examples - Is x² ≥ 0? - Float's: Yes! - » 40000 * 40000 --> 160000000 - » 50000 * 50000 --> ?? - = Is (x + y) + z = x + (y + z)? - Unsigned & Signed Int's: - Float's: » (1e20 + -1e20) + 3.14 --> 3.14 » 1e20 + (-1e20 + 3.14) --> ?? 6 ### **Computer Arithmetic** ### Does not generate random values Arithmetic operations have important mathematical properties ### Cannot assume "usual" properties - Due to finiteness of representations - Integer operations satisfy "ring" properties - Commutativity, associativity, distributivity - Floating point operations satisfy "ordering" properties - Monotonicity, values of signs ### Observation - Need to understand which abstractions apply in which contexts - Important issues for compiler writers and serious application programmers ### **Great Reality #2** You've got to know assembly ### Chances are, you'll never write a program in assembly ■ Compilers are much better & more patient than you are ## Understanding assembly is key to understanding the machine-level execution model - Behavior of programs in presence of bugs - High-level language model breaks down - Tuning program performance - Understanding sources of program inefficiency - Implementing system software - Compiler has machine code as target - Operating systems must manage process state 8 ### **Assembly Code Example** ### **Time Stamp Counter** - Special 64-bit register in Intel-compatible machines - Incremented every clock cycle - Read with rdtsc instruction ### Application - Measure time required by procedure - In units of clock cycles ``` double t; start_counter(); P(); t = get_counter(); printf("P required %f clock cycles\n", t); ``` ### **Code to Read Counter** - Write small amount of assembly code using GCC's asm facility - Inserts assembly code into machine code generated by compiler Code to Read Counter ``` /* Record the current value of the cycle counter. */ void start_counter() { access_counter(&cyc_hi, &cyc_lo); } /* Number of cycles since the last call to start_counter. */ double get_counter() { unsigned ncyc_hi, ncyc_lo; unsigned hi, lo, borrow; /* Get cycle counter */ access_counter(&ncyc_hi, &ncyc_lo); /* Do double precision subtraction */ lo = ncyc_lo - cyc_lo; borrow = lo > ncyc_lo; hi = ncyc_hi - cyc_hi - borrow; return (double) hi * (1 << 30) * 4 + lo; }</pre> ``` ### **Measuring Time** ### Trickier than it Might Look ■ Many sources of variation ### Example ■ Sum integers from 1 to n 12 ### **Great Reality #3** ### Memory Matters ### Memory is not unbounded - It must be allocated and managed - Many applications are memory dominated ### Memory referencing bugs are especially pernicious ■ Effects are distant in both time and space ### Memory performance is not uniform - Cache and virtual memory effects can greatly affect program performance - Adapting program to characteristics of memory system can lead to major speed improvements 13 ### Memory Referencing Bug Example ``` main () { long int a[2]; double d = 3.14; a[2] = 1073741824; /* Out of bounds reference */ printf("d = %.15g\n", d); exit(0); } ``` | | Alpha | MIPS | Linux | |----|-----------------------|-----------------|-------| | -g | 5.30498947741318e-315 | 3.1399998664856 | 3.14 | | -0 | 3.14 | 3.14 | 3.14 | (Linux version gives correct result, but implementing as separate function gives segmentation fault.) 14 ### **Memory Referencing Errors** ### C and C++ do not provide any memory protection - Out of bounds array references - Invalid pointer values - Abuses of malloc/free ### Can lead to nasty bugs - Whether or not bug has any effect depends on system and compiler - Action at a distance - Corrupted object logically unrelated to one being accessed - Effect of bug may be first observed long after it is generated ### How can I deal with this? - Program in Java, Lisp, or ML - Understand what possible interactions may occur - Use or develop tools to detect referencing errors 15 ### **Memory Performance Example** ### Implementations of Matrix Multiplication ■ Multiple ways to nest loops ``` /* ijk */ for (i=0; i<n; i++) { for (j=0; j<n; j++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum; } } ``` ``` /* jik */ for (j=0; j<n; j++) { for (i=0; i<n; i++) { sum = 0.0; for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; c[i][j] = sum } } ``` # Matmult Performance (Alpha 21164) Too big for L1 Cache Too big for L2 Cache ### **Great Reality #4** There's more to performance than asymptotic complexity ### Constant factors matter too! - Easily see 10:1 performance range depending on how code is written - Must optimize at multiple levels: algorithm, data representations, procedures, and loops ### Must understand system to optimize performance - How programs compiled and executed - How to measure program performance and identify bottlenecks - How to improve performance without destroying code modularity and generality 19 ### **Great Reality #5** Computers do more than execute programs ### They need to get data in and out ■ I/O system critical to program reliability and performance ### They communicate with each other over networks - Many system-level issues arise in presence of network - Concurrent operations by autonomous processes - Coping with unreliable media - Cross platform compatibility • Complex performance issues 20 ### **Course Perspective** ### Most Systems Courses are Builder-Centric - Computer Architecture - Design pipelined processor in Verilog - Operating Systems - Implement large portions of operating system - Compilers - Write compiler for simple language - Networking - Implement and simulate network protocols Course Perspective (Cont.) ### This Course is Programmer-Centric - Purpose is to show how by knowing more about the underlying system, one can be more effective as a programmer - Enable you to - Write programs that are more reliable and efficient - Incorporate features that require hooks into OS - » E.g., concurrency, signal handlers - Not just a course for dedicated hackers - We bring out the hidden hacker in everyone - Cover material in this course that you won't see elsewhere 2 # What is a computer? ### **Hardware Components and Organization:** ### **Summary** The Computer system is more than just hardware! We have to understand both the hardware and the system interfaces to properly understand and use a computer. The rest of this semester will be spent studying these concepts in much more detail. 7