
Spring 2009 Homework 3 RAIK284H

Homework 3

1 Logistics

Homework 3 is a one-person assignment worth 100 points.

The assignment is due on Thursday, March 5 at 9:00 PM. Hand-in is automatic.

2 Grading

Homework 3 has the following graded components:

• Level 0: Candle (10 points)

• Level 1: Sparkler (20 points)

• Level 2: Firecracker (30 points)

• Level 3: Dynamite (40 points)

• Bonus Level 4: Nitroglycerin (10 points)

3 Overview

This assignment helps you develop a detailed understanding of the calling stack organization on an IA32
processor. It involves applying a series of buffer overflow attacks on an executable file bufbomb in the lab
directory.

Note:

In this lab, you will gain firsthand experience with one of the methods commonly used to exploit security
weaknesses in operating systems and network servers. Our purpose is to help you learn about the run-time
operation of programs and to understand the nature of this form of security weakness so that you can avoid
it when you write system code. We do not condone the use of these or any other form of attack to gain
unauthorized access to any system resources. There are criminal statutes governing such activities.

4 Assignment

4.1 Setup

You should complete this lab on osage.unl.edu. Because there are additional security features on osage, the
bomb has been wrapped with a stack derandomizer. Be sure to read the last section of this document, which
explains how this affects you.

Start by downloading buflab-handout.tar to a protected directory in which you plan to do your work. Then
give the command “tar xvf buflab-handout.tar”. This will cause a number of files to be unpacked in
the directory:

1

http://osage.unl.edu/
http://cse.unl.edu/~raik284h/hw/buflab-handout.tar

Spring 2009 Homework 3 RAIK284H

• makecookie: Generates a “cookie” based on your cse login.

• bufbomb: The code you will attack.

• sendstring: A utility to help convert between string formats.

All of these programs are compiled to run on Linux machines.

In the following instructions, we will assume that you have copied the three programs to a protected local
directory, and that you are executing them in that local directory.

4.2 Cookie

A cookie is a string of eight hexadecimal digits that is with high probability unique to your login. You can
generate your cookie with the makecookie program giving your cse login as the argument. For example:

linux> ./makecookie raik284h
0x316fd3c0

In four of the five buffer attacks, your objective will be to make your cookie show up in places where it
ordinarily would not.

4.3 The Bufbomb Program

The bufbomb program reads a string from standard input with a function getbuf having the following C
code:

Listing 1: getbuf()
1 int getbuf (){
2 char buf [12];
3 Gets(buf);
4 return 1;
5 }

The function Gets is similar to the standard library function gets—it reads a string from standard input
(terminated by ‘\n’ or end-of-file) and stores it (along with a null terminator) at the specified destination.
In this code, the destination is an array buf having sufficient space for 12 characters.

Neither Gets nor gets has any way to determine whether there is enough space at the destination to store
the entire string. Instead, they simply copy the entire string, possibly overrunning the bounds of the storage
allocated at the destination.

If the string typed by the user to getbuf is no more than 11 characters long, it is clear that getbuf will
return 1, as shown by the following execution example:

linux> ./bufbomb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

linux> ./bufbomb
Type string: This string is too long
Ouch!: You caused a segmentation fault!

2

http://cse.unl.edu
http://cse.unl.edu

Spring 2009 Homework 3 RAIK284H

As the error message indicates, overrunning the buffer typically causes the program state to be corrupted,
leading to a memory access error. Your task is to be more clever with the strings you feed bufbomb so that
it does more interesting things. These are called exploit strings.

bufbomb takes several different command line arguments:

• -t login: Operate the bomb for the indicated login, where login is your cse login. You should always
provide this argument for several reasons:

– It is required to log your successful attacks.

– bufbomb determines the cookie you will be using based on your login, just as does the program
makecookie.

– We have built features into bufbomb so that some of the key stack addresses you will need to use
depend on your cookie.

• -h: Print list of possible command line arguments

• -n: Operate in “Nitro” mode, as is used in Level 4 below.

Your exploit strings will typically contain byte values that do not correspond to the ASCII values for
printing characters. The program sendstring can help you generate these raw strings. It takes as input a
hexadecimal-formatted string. In this format, each byte value is represented by two hex digits. For example,
the string “012345” could be entered in hex format as “30 31 32 33 34 35.” (Recall that the ASCII code
for decimal digit x is 0x3x.) Non-hex digit characters are ignored, including the blanks in the example
shown.

If you generate a hex-formatted exploit string in the file exploit.txt, you can apply the raw string to
bufbomb in several different ways:

• You can set up a series of pipes to pass the string through sendstring:

linux> cat exploit.txt | ./sendstring | ./bufbomb -t raik284h

• You can store the raw string in a file and use I/O redirection to supply it to bufbomb:

linux> ./sendstring < exploit.txt > exploit-raw.txt
linux> ./bufbomb -t raik284h < exploit-raw.txt

This approach can also be used when running bufbomb from within gdb:

linux> gdb bufbomb
(gdb) run -t raik284h < exploit-raw.txt

One important point: your exploit string must not contain byte value 0x0A at any intermediate position,
since this is the ASCII code for newline (‘\n’). When Gets encounters this byte, it will assume you intended
to terminate the string. sendstring will warn you if it encounters this byte value.

When you correctly solve one of the levels, bufbomb will automatically send an e-mail notification to our
grading server. The server will test your exploit string to make sure it really works, and it will update the
lab web page indicating that you (listed by cookie) have completed this level.

Unlike the bomb lab, there is no penalty for making mistakes in this lab. Feel free to fire away at bufbomb
with any string you like.

3

http://cse.unl.edu/

Spring 2009 Homework 3 RAIK284H

4.4 Attacks

4.4.0 Candle

The function getbuf is called within bufbomb by a function test having the following C code:

Listing 2: test()
1 void test(){
2 int val;
3 volatile int local = 0xdeadbeef;
4 entry_check (3); /* Make sure we entered this function properly */

5 val = getbuf ();
6 /* Check for corrupted stack */

7 if(local != 0xdeadbeef){
8 printf("Sabotaged !: the stack has been corrupted\n");
9 }else if(val == cookie){

10 printf("Boom!: getbuf returned 0x%x\n", val);
11 validate (3);
12 }else{
13 printf("Dud: getbuf returned 0x%x\n", val);
14 }
15 }

When getbuf executes its return statement (line 4 of getbuf), the program ordinarily resumes execution
within function test at line 7 of this function. Within the file bufbomb, there is a function smoke having
the following C code:

Listing 3: smoke()
1 void smoke (){
2 entry_check (0); /* Make sure we entered this function properly */

3 printf("Smoke !: You called smoke ()\n");
4 validate (0);
5 exit (0);
6 }

Your task is to get bufbomb to go to the code for smoke when getbuf executes its return statement, rather
than returning to test. You can do this by supplying an exploit string that overwrites the stored return
pointer in the stack frame for getbuf with the address of the first instruction in smoke. Note that your
exploit string may also corrupt other parts of the stack state, but this will not cause a problem, since smoke
causes the program to exit directly.

Advice:

• All the information you need to devise your exploit string for this level can be determined by examining
a disassembled version of bufbomb.

• Be careful about byte ordering.

• You might want to use gdb to step the program through the last few instructions of getbuf to make
sure it is doing the right thing.

• The placement of buf within the stack frame for getbuf depends on which version of gcc was used to
compile bufbomb. You will need to pad the beginning of your exploit string with the proper number
of bytes to overwrite the return pointer. The values of these bytes can be arbitrary.

4

Spring 2009 Homework 3 RAIK284H

4.4.1 Sparkler

Within the file bufbomb there is also a function fizz having the following C code:

Listing 4: fizz()
1 void fizz(int val){
2 entry_check (1); /* Make sure we entered this function properly */

3 if(val == cookie){
4 printf("Fizz!: You called fizz(0x%x)\n", val);
5 validate (1);
6 }else{
7 printf("Misfire: You called fizz(0x%x)\n", val);
8 }
9 exit (0);

10 }

Similar to Candle, your task is to get bufbomb to execute the code for fizz rather than returning to test.
In this case, however, you must make it appear to fizz as if you have passed your cookie as its argument.
You can do this by encoding your cookie in the appropriate place within your exploit string.

Advice:

• Note that the program won’t really call fizz–it will simply execute its code. This has important
implications for where on the stack you want to place your cookie.

4.4.2 Firecracker

A much more sophisticated form of buffer attack involves supplying a string that encodes actual machine
instructions. The exploit string then overwrites the return pointer with the starting address of these in-
structions. When the calling function (in this case getbuf) executes its ret instruction, the program will
start executing the instructions on the stack rather than returning. With this form of attack, you can get
the program to do almost anything. The code you place on the stack is called the exploit code. This style
of attack is tricky, though, because you must get machine code onto the stack and set the return pointer to
the start of this code.

Within the file bufbomb there is a function bang having the following C code:

Listing 5: bang()
1 int global_value = 0;

3 void bang(int val){
4 entry_check (2); /* Make sure we entered this function properly */

5 if(global_value == cookie){
6 printf("Bang!: You set global_value to 0x%x\n", global_value);
7 validate (2);
8 }else{
9 printf("Misfire: global_value = 0x%x\n", global_value);

10 }
11 exit (0);
12 }

5

Spring 2009 Homework 3 RAIK284H

Similar to Candle and Sparkler, your task is to get bufbomb to execute the code for bang rather than returning
to test. Before this, however, you must set global variable global_value to your cookie. Your exploit code
should set global_value, push the address of bang on the stack, and then execute a ret instruction to cause
a jump to the code for bang.

Advice:

• You can use gdb to get the information you need to construct your exploit string. Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such as the address of global_value
and the location of the buffer.

• Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with gcc and disassemble it with objdump. You should
be able to get the exact byte sequence that you will type at the prompt. (A brief example of how to
do this is included at the end of this writeup.)

• Keep in mind that your exploit string depends on your machine, your compiler, and even your cookie.
Do all of your work on osage, and make sure you include the proper login on the command line to
bufbomb.

• Our solution requires 16 bytes of exploit code. Fortunately, there is sufficient space on the stack,
because we can overwrite the stored value of %ebp. This stack corruption will not cause any problems,
since bang causes the program to exit directly.

• Watch your use of address modes when writing assembly code. If your solution is just a tad too big,
you are probably using an immediate value as a memory address. Note that movl $0x4, %eax moves
the value 0x00000004 into register %eax; whereas movl 0x4, %eax moves the value at memory location
0x00000004 into %eax. Since that memory location is usually undefined, the second instruction will
cause a segfault!

• Do not attempt to use either a jmp or a call instruction to jump to the code for bang. These
instructions uses PC-relative addressing, which is tricky to set up correctly. Instead, push an address
on the stack and use the ret instruction.

4.4.3 Dynamite

Our preceding attacks have all caused the program to jump to the code for some other function, which then
causes the program to exit. As a result, it was acceptable to use exploit strings that corrupt the stack,
overwriting the saved value of register %ebp and the return pointer.

The most sophisticated form of buffer overflow attack causes the program to execute some exploit code that
patches up the stack and makes the program return to the original calling function (test in this case). The
calling function is oblivious to the attack. This style of attack is tricky, though, since you must:

1. Get machine code onto the stack

2. Set the return pointer to the start of this code

3. Undo the corruptions made to the stack state.

Your job for this level is to supply an exploit string that will cause getbuf to return your cookie back to
test, rather than the value 1. You can see in the code for test that this will cause the program to go

6

http://osage.unl.edu/

Spring 2009 Homework 3 RAIK284H

“Boom!.” Your exploit code should set your cookie as the return value, restore any corrupted state, push the
correct return location on the stack, and execute a ret instruction to really return to test.

Advice:

• In order to overwrite the return pointer, you must also overwrite the saved value of %ebp. However,
it is important that this value is correctly restored before you return to test. You can do this by
either: making sure that your exploit string contains the correct value of the saved %ebp in the correct
position, so that it never gets corrupted, or restore the correct value as part of your exploit code. You’ll
see that the code for test has some explicit tests to check for a corrupted stack.

• You can use gdb to get the information you need to construct your exploit string. Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such as the saved return address and
the saved value of %ebp.

• Again, let tools such as gcc and objdump do all of the work of generating a byte encoding of the
instructions.

• Keep in mind that your exploit string depends on your machine, your compiler, and even your cookie.
Do all of your work on osage, and make sure you include the proper login on the command line to
bufbomb.

Once you complete this level, pause to reflect on what you have accomplished. You caused a program to
execute machine code of your own design. You have done so in a sufficiently stealthy way that the program
did not realize that anything was amiss.

4.4.4 Nitroglycerin

If you have completed the first four levels, you have earned 100 points. You have mastered the principles
of the run-time stack operation, and you have gained firsthand experience with buffer overflow attacks. We
consider this a satisfactory mastery of the material. You are welcome to stop right now.

The next level is for those who want to push themselves beyond our baseline expectations for the course,
and who want to face a challenge in designing buffer overflow attacks that arises in real life. This part of the
assignment only counts 10 points, even though it requires a fair amount of work to do, so don’t do it just
for the points.

From one run to another, especially by different users, the exact stack positions used by a given procedure
will vary. One reason for this variation is that the values of all environment variables are placed near the
base of the stack when a program starts executing. Environment variables are stored as strings, requiring
different amounts of storage depending on their values. Thus, the stack space allocated for a given user
depends on the settings of his or her environment variables. More significantly though, modern operating
systems intentionally add variation to the stack to hamper buffer overflow attacks.

In the code that calls getbuf, we have incorporated features that stabilize the stack, so that the position of
getbuf’s stack frame will be consistent between runs. This made it possible for you to write an exploit string
knowing the exact starting address of buf and the exact saved value of %ebp. If you tried to use such an exploit
on a normal program, you would find that it works only rarely and otherwise causes segmentation faults.
Hence the name “dynamite”–an explosive developed by Alfred Nobel that contains stabilizing elements to
make it less prone to unexpected explosions.

For this level, we have gone the opposite direction, making the stack positions far less stable (but still stable
enough to be vulnerable). Hence the name “nitroglycerin”–an explosive that is notoriously unstable.

7

http://osage.unl.edu/

Spring 2009 Homework 3 RAIK284H

When you run bufbomb with the command line flag “-n,” it will run in “Nitro” mode. Rather than calling
the function getbuf, the program calls a slightly different function getbufn:

Listing 6: getbufn()
1 int getbufn (){
2 char buf [512];
3 Gets(buf);
4 return 1;
5 }

This function is similar to getbuf, except that it has a buffer of 512 characters. You will need this additional
space to create a reliable exploit. The code that calls getbufn first allocates a random amount of storage on
the stack (using library function alloca) that ranges between 0 and 127 bytes. Thus, if you were to sample
the value of %ebp during two successive executions of getbufn, you would find they differ by as much as
±127.

In addition, when run in Nitro mode, bufbomb requires you to supply your string 5 times, and it will execute
getbufn 5 times, each with a different stack offset. Your exploit string must make it return your cookie each
of these times.

Your task is identical to the task for the Dynamite level. Once again, your job for this level is to supply an
exploit string that will cause getbufn to return your cookie back to test, rather than the value 1. You can
see in the code for test that this will cause the program to go “KABOOM!.” Your exploit code should set your
cookie as the return value, restore any corrupted state, push the correct return location on the stack, and
execute a ret instruction to really return to testn.

Advice:

• You can use the program sendstring to send multiple copies of your exploit string. If you have a
single copy in the file exploit.txt, then use the following command:

linux> cat exploit.txt | ./sendstring -n 5 | ./bufbomb -n -t raik284h

You must use the same string for all 5 executions of getbufn. Otherwise it will fail the testing code used by
our grading server.

• The trick is to make use of the nop instruction. It is encoded with a single byte (code 0x90). You
can place a long sequence of these at the beginning of your exploit code so that your code will work
correctly if the initial jump lands anywhere within the sequence.

• You will need to restore the saved value of %ebp in a way that is insensitive to variations in stack
positions.

4.5 Status

Hand in occurs automatically whenever you correctly solve a level. The program sends e-mail to our grading
server containing your login (be sure to set the “-t” command line flag properly) and your exploit string
to the grading server. You will be informed of this by bufbomb. Upon receiving the e-mail, the server will
validate your string and update the lab web page. You should check this page a few minutes after your
submission to make sure your string has been validated. (If you really solved the level, your string should be
valid.)

Note that each level is graded individually. You do not need to do them in the specified order, but you will
get credit only for the levels for which the server receives a valid message. Have fun!

8

Spring 2009 Homework 3 RAIK284H

4.6 Generating Byte Codes

Using gcc as an assembler and objdump as a disassembler makes it convenient to generate the byte codes
for instruction sequences. For example, suppose we write a file example.s containing the following assembly
code:

Listing 7: example.s
1 # Example of hand -generated assembly code
2 pushl $0x89abcdef # Push value onto stack
3 addl $17 , %eax # Add 17 to %eax
4 .align 4 # Following will be aligned on multiple of 4
5 .long 0xfedcba98 # A 4-byte constant
6 .long 0x00000000 # Padding

The code can contain a mixture of instructions and data. Anything to the right of a ‘#’ character is a
comment. We have added an extra word of all zeros to work around a property of objdump to be described
shortly.

We can now assemble and disassemble this file:

linux> gcc -c example.s
linux> objdump -d example.o > example.d

The generated file example.d contains the following lines

Listing 8: example.d
1 0: 68 ef cd ab 89 push $0x89abcdef
2 5: 83 c0 11 add $0x11 ,%eax
3 8: 98 cwtl #Objdump tries to interpret
4 9: ba dc fe 00 00 mov $0xfedc ,%edx #these as instructions

Each line shows a single instruction. The number on the left indicates the starting address (starting with
0), while the hex digits after the ‘code:’ character indicate the byte codes for the instruction. Thus, we can
see that the instruction pushl $0x89ABCDEF has hex-formatted byte code 68 ef cd ab 89.

Starting at address 8, the disassembler gets confused. It tries to interpret the bytes in the file example.o
as instructions, but these bytes actually correspond to data. Note, however, that if we read off the 4 bytes
starting at address 8 we get: 98 ba dc fe. This is a byte-reversed version of the data word 0xFEDCBA98.
This byte reversal represents the proper way to supply the bytes as a string, since a Little-Endian machine
lists the least significant byte first. Note also that it only generated two of the four bytes at the end with
value 00. Had we not added this padding, objdump gets even more confused and does not emit all of the
bytes we want.

Finally, we can read off the byte sequence for our code (omitting the final zeros) as: 68 ef cd ab 89 83
c0 11 98 ba dc fe.

5 The Derandomizer

To make buffer overflow attacks more difficult, most current operating systems randomize the stack. In such
an operating system, it is as if the bomb is always running in Nitro mode, except that the variations in
addresses can be larger than the maximum size of the stack! Even with the extra stabilizing code originally
included in this assignment, exploding the bomb with a randomized stack would require many tries. With
a recent upgrade, osage now has a randomized stack.

9

http://osage.unl.edu/

Spring 2009 Homework 3 RAIK284H

Therefore, we’ve wrapped a derandomizer around the bomb to eliminate these variations. Unfortunately, the
de-randomization process is also good at confusing gdb. To get around this you need to start the program,
wait for the stack to derandomize, and then attach the debugger.

The shell command will start a separate process from within gdb; you should also add a trailing ampersand
(\&) so that gdb doesn’t wait for the program to terminate before returning you to the debug prompt. The
ampersand also means that you won’t be able to type input directly, but this should be okay if you’re using
the sendstring utility.

(gdb) shell ./bufbomb -t raik284h &
[1] 5505
(gdb) Stack successfully derandomized.
It is now safe to attach your debugger to process 5505.
Send an interrupt from the debugger to continue,
or directly if you aren’t debugging.

The attach command will attach gdb to the separate process; it takes a process id as its argument. When
you attach, gdb will break and wait for your input.

You can ignore error messages about “failing to read a valid object file.” If you step into a system call, you
will see that there is some wrapping code in its own object file responsible for getting the CPU into kernel
mode so that the OS can process the request. gdb is trying to read this page of code to give you better
information during debugging. Unfortunately, the kernel isn’t letting gdb do that, so you’ll have to get by
with what gdb does know.

When you’re ready for the derandomizer to invoke the bomb, ask gdb to send it a SIGINT. The program
will give you a warning about the next command, but you shouldn’t see any problems on osage, nor should
you need the next command to complete this homework.

(gdb) signal SIGINT
Continuing with signal SIGINT.
Interrupt received; continuing.
If you are using a debugger, note that its ‘next’ command may no longer work;
the debugger might not have permission to put maintenance breakpoints on
siglongjmp(). This should be okay; just use ‘step,’ ‘step by instruction,’
or place another breakpoint and use ‘continue’ if you need similar behavior.
Team: raik284h
Cookie: 0x316fd3c0
Type string:Dud: getbuf returned 0x1
Better luck next time

Program exited normally.

If you try to invoke the program directly from the debugger, it will give you an error message.

(gdb) r -t raik284h
Starting program: ./bufbomb -t raik284h
Failed to read a valid object file image from memory.

It appears that you have started the program directly from a debugger.

This is probably a bad idea because the stack derandomization could confuse it.
Therefore, for your own safety (and your grade), the program will now exit.
If you want to debug this program, start it separately and attach your debugger
when prompted to do so.

10

http://osage.unl.edu/

Spring 2009 Homework 3 RAIK284H

Program terminated with signal SIGKILL, Killed.
The program no longer exists.

11

	Logistics
	Grading
	Overview
	Assignment
	Setup
	Cookie
	The Bufbomb Program
	Attacks
	Candle
	Sparkler
	Firecracker
	Dynamite
	Nitroglycerin

	Status
	Generating Byte Codes

	The Derandomizer

