Communication is central

- process management: messages synchronize, coordinate
- file mgmt: messages access and transmit files and directory information
- device mgmt: messages carry data
- memory mgmt: messages carry data

Network Layer
- facilities to send and receive messages to addressed locations
- routing: messages are forwarded

Communication Networks

Steve Goddard
cse.unl.edu

/~goddard/Courses/CSCE855
Communication Networks

- Open System Interconnect (OSI) 7-layer model
 - Physical
 - Data Link
 - Network
 - Transport
 - Session
 - Presentation
 - Application

OSI 7-layer model

- Physical
 - transmit bits and bytes
 - LANs
- Data Link
 - translate signals (bits/bytes) into frames
 - checksums, source and destination
- Network
 - translate frames into packets
 - packet routing
 - datagrams
OSI 7-layer model

◆ **Transport**
 » reliable end-to-end byte streams
 » packet re-sending, packet ordering
 » virtual circuits

◆ **Session**
 » high-level naming, bi-directional streams
 » managing more than one communication session

◆ **Presentation**
 » translation between protocols
 » heterogeneous systems

◆ **Application**
 » user applications

OSI 7-layer model (cont.)

◆ **Higher-level facilities**
 » Application
 » Presentation
 » Session

◆ **Basic network communication services**
 » transport
 » network

◆ **Physical medium and LANs**
 » data-link
 » physical
OSI 7-layer model (cont.)

◆ General tradeoff
 » quite flexible
 ❖ supports a wide range of applications
 ❖ makes communication as transparent as user needs it (i.e. user can choose level as needed)
 » each layer adds overhead
 ❖ reduce number of layers
 ❖ simplify layers
 ❖ improve implementations

◆ Specific protocols for different problems

Network and Transport Layers

◆ Network layer does not provide reliability
 » packets may be lost
 ❖ no means to detect errors
 ❖ higher levels must provide for detection of errors and re-sending packets
 » packets may be received out-of-order
 ❖ large messages broken down into fixed packet size
 ❖ packets reconstructed to make message at recipient
Network and Transport Layers (cont.)

◆ Transport layer
 » transparent transfer of data
 » reliability provided
 ♦ re-sending lost messages
 ♦ packet ordering

◆ Network layer provides services for transport layer
 » connectionless (IP - datagram service)
 » connection-oriented (X.25 - virtual circuit service)

Connectionless and Connection-Oriented Services

◆ Connectionless services
 » datagrams: single message sent from point-to-point
 » no relationship established between packets
 » advantages:
 ♦ protocol is simple
 ♦ data delivery is fast
 » disadvantages:
 ♦ no error handling, ordering of packets
 ♦ each packet self-identifying; leads to long headers
 ♦ packets may arrive out of order
Connection-oriented service

» virtual circuit: data path between endpoints
» communication can have a state
 ✤ send a reply every 5 messages
» three phases
 ✤ establish connection
 ✤ transfer data
 ✤ release connection
» advantage: reliable communication
» disadvantage:
 ✤ protocol complexity makes communication slower
 ✤ error handling, flow control add overhead

Overhead from “virtual circuits”

» connection establishment, release
» reliability
 ✤ detecting lost messages (time-outs, etc)
 ✤ re-sending lost messages
 ✤ message acknowledgment
 ✤ packet ordering
 ✤ ordering algorithm
 ✤ sending additional order information

Network layer

» virtual circuits do not guarantee reliability
» connectionless services (datagrams) dominate
Connection-Oriented Services (cont.)

- Transport layer
 - virtual circuits guarantee reliability
 - TCP
 - some connectionless services have reliability services
 - IP: guaranteed packet delivery with TCP over IP

Internet Protocols

- Internet Protocol (IP)
 - connection-less
 - network routing
 - datagram construction
Internet Protocols

◆ Transmission Control Protocol (TCP)
 » connection-oriented; establish a (logical) virtual circuit
 » positive acks, time-out
 » sequence numbers
 » connection procedures
 » state information is kept

◆ User Datagram Protocol (UDP)
 » no acks, messages may arrive out-of-order
 » essentially IP with some minor additions

<table>
<thead>
<tr>
<th>Transmission Control Protocol (TCP)</th>
<th>User Datagram Protocol (UDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Protocol (IP)</td>
<td></td>
</tr>
</tbody>
</table>

Asynchronous Transfer Mode (ATM)

◆ Connection Oriented

◆ Virtual circuits

◆ Fixed-size blocks (cells)

◆ Connection is established and all cells follow the same route over a switched network
ATM

Rationale

◆ Voice transmissions require steady bandwidth
 » bandwidth needs are low, but need to be consistent
◆ Data (esp. real-time) is bursty
 » high rates needed when transmitting data, no bandwidth otherwise
◆ Want networks to handle both
 » solution: small packets that can be rapidly switched

ATM

Characteristics

◆ Fixed size blocks sent over virtual circuits
 » routing info stored in switches
◆ A packet-switching network
 » meaning packet transmissions can be interleaved
◆ Packets broken into very small cells
◆ Allowed to drop cells
 » usually results in re-transmission of entire packet
ATM (lowest three) Layers

- Physical
 » same functionality as OSI Layer 1

- ATM
 » OSI Layer 2 and part of OSI Layer 3

- Adaptation
 » OSI Layer 4 but without reliable end-to-end service

ATM Physical Layer

- Designed to use optical technology
- Essentially digital switch technology
 » star topology with switch as central node
 » each machine has dedicated connection to switch
 » multiple communication paths can be open simultaneously
- Switching networks...
 » allow scaling to large networks
ATM
ATM Layer

◆ Connection-oriented cell routing
 » connection set up only if sufficient resources are available

◆ Cell structure
 » 48 bytes of data
 » 5 header fields (53 bytes total)
 » Virtual Path Identifier (VPI)
 » Virtual Circuit Identifier (VCI)

ATM
ATM Layer (cont.)

◆ Virtual channel (VC)
 » unidirectional association between source and destination
 » refers to specific channels inside the virtual path
 » allocated dynamically at connection setup

◆ Virtual paths (VP)
 » collection of VCs
 » (semi-)permanent connection between pairs of endpoints
ATM

Adaptation Layer

- Essentially chops packets into cells ... then re-assembles them
- Cells can be dropped
 » adaptation layer not reliable
- Need higher layers for transport connections
 » use ATM cells to carry TCP/IP packets
 » TCP/IP will take care of reliability
 » means entire packet will need to be re-sent

ATM Switching

- VC and VP together provide routing information
 » VPI: refers to virtual path on the physical link
 » VCI: refers to specific VC inside VP
- General routing strategy
 » VPI field used by routing tables to determine next destination
 » VPI field modified at each hop
 » if virtual path used by more than one cell
 - use VCI field to determine destination
 - VCI field also changed at each hop
ATM Switching (cont.)

◆ Cells needing the same output line
 » must choose whether to buffer or not
 ❖ standard allows to just drop a cell
 ❖ don’t want to do that often
 » buffering at the input port
 ❖ pick one cell to forward, hold others
 ❖ long input queues may result
 ❖ this blocks cells wanting to go to other output ports
 ❖ ...known as head-of-line blocking
 » buffering at the output port
 ❖ queue located at output port
 ❖ removes head-of-line blocking
 ❖ can also have a pool of input and output buffers

Local Area Networks

◆ Three dominant topologies
 » star (digital switch, ATM)
 » ring
 » bus

◆ Ethernet
 » multi-access bus technology
 » messages broadcast to all nodes
 » all nodes listen to bus
 ❖ receives only messages addressed to the node
 » bus contention: single communication line
Ethernet

- Implements physical and data link layers
 - multi-access bus
 - transmits data link frames
- Access Method:Carrier sense multiple access with collision detection (CSMA/CD)
 - CSMA to reduce the chance of collisions
 - CD to detect collisions (and retransmit with back off)

Ethernet

CSMA/CD

- Carrier Sense Multiple Access (CSMA)
 - carrier sense: listen for clear bus
 - if busy, wait for clear carrier
 - if clear, send message (transmit a packet)
 - listen to bus while transmitting for CD
- Collision Detection (CD)
 - sender compares outgoing message to received message
 - if mismatch occurs, assume collision has occurred
 - if collision has occurred
 - each sender waits a period of time (back off)
 - then re-send packet
Ethernet

Collision Detection

- Assume a collision occurs
 - all nodes back off 2 sec and re-transmits
 - what will happen?
- Back off intervals
 - nodes detection collision back off a random time interval
 - what if another collision occurs
 - may want to back off a longer time period
 - binary exponential backoff
 - i^{th} collision back off between 0 and 2^{i-1} interval

Ethernet vs. ATM

- **Ethernet**
 - keep traffic fairly sparse to avoid collisions
 - gateways to divide network into smaller units
 - limit transmission time
 - keep packet size small
 - keep length of network small
 - increase transmission speed
- **ATM**
 - packets can be transmitted in parallel
 - “collisions” handled by ATM buffers
 - buffers are a finite size
 - cells can be dropped - re-transmit packet
 - scaling to larger networks
 - use larger switches
 - switching networks
 - network speed a factor, but importance reduced by parallel transfer in ATM
 - busy machine can be a bottleneck