CSCE 462/862 Communication Networks

The Physical Layer

Steve Goddard goddard@cse.unl.edu

Transmission Media

- ◆ Magnetic Media
- Twisted Pair
- Baseband Coaxial Cable
- Broadband Coaxial Cable
- Fiber Optics
- ♦ Wireless

Transmission Media

- Magnetic Media
 - » Cheap: \$.10/Gigabyte
 - » High bandwidth
 - » High Latency
- ♦ Twisted Pair
 - » Unshielded Twisted Pair (UTP)
 - » Cat 3 or Cat 5
 - » Phone lines implement a cut-off filter near 3000Hz
 - Limit of 38,400 baud
 Can get > 38.4k bps by encoding multiple bits in a signal

Transmission Media

- ◆ Baseband Coaxial Cable (Coax)
 - » 50 ohm Cable used for digital transmission
 - » Better shielding than twisted pair» Bandwidth depends on cable length
 - Bandwidth depends on cable lengt
 1 km cable can transfer 1 or 2 Gbps
- ◆ Broadband Coaxial Cable (> 4000Hz)
 - » 75 ohm Cable used for analog transmission
 - » Broadband networks use cable TV technology
 up to 100km and 300-400 MHz
 - Bandwidth depends on number of bits encoded within each Hz.
 - » Divided into multiple channels
 Broadcast both TV and data on one cable

Transmission Media Broadband Coax

- ◆ Amplifiers amplify the signal in one direction
 - » Dual cable systems (Fig. 2.4a)
 - transmit on cable 1
 receive on cable 2
 - » Single cable systems (Fig. 2.4b)
 - Shighe cable systems (Fig. 2.46)
 Split the frequency for transmitting and receiving
 - Subsplit
 - receive on 4-30 MHz frequencies
 - transmit on 40-300 MHz frequencies
 - Midsplit
 - receive on 5-116 MHz frequencies
 - transmit on 168-300 MHz frequencies
- ◆ Inferior to Baseband, but ubiquitous

Fiber Optics

- Bandwidth
 - » 1 Gbps today
 - » 100 Gbps in lab
 - » 1000 Gbps = 1Tbps soon
- Components of optical transmission
 - » Transmission Media
 - » Light source
 - » Detector

Fiber Optics Transmission Media

- ◆ Ultra-thin fiber of glass
 - » See Fig. 2-7
 - » Multi-mode fiber
 - * 50 micron diameter: width of a human hair
 - light sent at an angle, Fig. 2.5(b)
 - * multiple light sources create multiple signals on one fiber
 - » Single-mode fiber
 - ♦ 8-10 micron diameter light travels a straight line
 - $\diamond > 1$ Gbps for 30+ km

Fiber Optics Light Source

- ♦ Light source
 - » LED (Light Emitting Diode)
 - » Semiconductor laser
 - » Fig 2.8

Fiber Optics Detector

- ◆ Detector
 - » Photodiode
 - » Generates a pulse when light hits it 1 if light is on
 - ♦ 0 if light is off
 - » 1 ns response time
 - limits bandwidth

Fiber Optics Network

- ♦ Ring Topology
 - » Passive interface
 - * Failure of interface diode/LED does not affect rest of network
 - * Attenuation of the signal can be a problem
 - » Active interface
 - * Fig. 2-9
 - * Failure of interface brings down the network
 - * Signal is regenerated to full strength at each interface
- Passive Star Topology
 - » Fig. 2-10.
 - » connectivity is limited by sensitivity of diodes

Fiber vs. Wire

♦ Fiber

- » High bandwidth
- » Low attenuation
- » Not affect by
- power surge/failure
 EMF
- Harsh environment » Thin and lightweight
- 1km cable of 2 fibers
- weighs 100 kg
- » Hard to tap: security

Wire

- » More familiar material
- » Bi-directional
- » Cheap interfaces
- » Thick and heavy 1km cable of 1000 twisted pair weighs 8000 kg

Wireless Transmission

- When electrons move, they create electromagnetic waves
 - » # of oscillations/sec = frequency (f)
 - » Distance from maxima to maxima = wavelength (λ)
 - » Attach antenna to circuit to broadcast/receive waves
- Transmit signals by modulating
 - » Amplitude,
 - » Frequency, or
 - » Phase

Wireless Transmission Electromagnetic Spectrum

- Fig. 2-11 shows frequency bands used for communication
 - » Notice where Fiber Optics lies
- Bit encoding increases transmission rate
 - » Encode 3 bpHz at low f
 - » Encode 40 bpHz at high f
 - ✤ 500 MHz cable can transmit > 2 Gbps

Wireless Transmission Electromagnetic Spectrum

- Low frequency signals
 » omni-directional
 - » penetrate objects
- High frequency signals
 - » narrow, focused signal
 - » absorbed/deflected by objects

The Telephone System

- ♦ WAN
 - » Expensive to run lines for WAN
 - Therefore, most WAN use PSTN (Public Switched Telephone Network)

◆ Evolution of PSTN

- » See Fig. 2-14
 - Phones were hard-wired to each other
 - Switching center created for a city
 - Multi-level switching offices to connect cities

The Telephone System (cont.)

- Today's U.S. telephone network
 - » See Fig. 2-16
 - ♦ 160 LATAs (Local Access and Transport Area)
 - * usually one LEC (Local Exchange Carrier) per LATA
 - All inter-LATA traffic is handled by an IXC (InterXchange Carrier)
 - ♦ Any IXC can build a POP (Point of Presence) in a LATA and gets equal access to inter-LATA traffic

The Telephone System (cont.)

♦ 3 main components

- » Local Loops
- twisted pair
- analog signaling
- » Trunks
 - Fiber optics or microwave
- mostly digital
- » Switching Offices

Local Loop Computer Communications

- Modem (modulator-demodulator)
 - » Send digital data over analog lines
 - » See Fig. 2-17
- Problem with using analog communications
 - » Attenuation
 - loss of energy as signal propogates
 - » Delay distortion
 - Fourier components travel at different speeds
 - » Noise
 - unwanted energy from external sources

Local Loop

Computer Communications

- AC signal is used to handle attenuation and delay distortion
- Sine wave carrier signal used to modulate » Amplitude
 - Amplitude
 - 0, 1 represented by varying voltage level» Frequency
 - ♦ 2 or more tones
 - » Phase
 - wave is shifted 45, 135, 225, or 335 degrees
 - each phase shift represents 2 bits of info
- Combining modulation techniques increases bps per baud

Local Loop High Speed Communications

- Shorter twisted pair local loop
 - » FTTC» See Fig. 2-23
- Different media in the local loop
 - » Coax: cable modems
 - » FTTH
 - » Wireless ?

Trunks and Multiplexing

- ◆ Frequency Division Multiplexing: FDM
 - » Frequency spectrum is divided into logical channels» Each user has exclusive use of a frequency band
 - » See Fig. 2-24
- Wavelength Division Multiplexing: WDM
 - » FDM over fiber: Fig.2-25
 - » Completely passive
- ◆ Time Division Multiplexing: TDM
 - » Each user gets entire bandwidth is used to transmit data
 - » Round-robin access: Fig 2-28.