
System Calls in Nachos

Matt Peters

Robert W. Hill

September 1, 1998

Abstract

This document describes the system call interface for the Nachos instructional Op-

erating System. Code excerpts are provided, and an example system call is detailed.

1 Introduction

A Nachos user program operates on a simulated MIPS processor. At the same time, the

Nachos operating system operates on a host processor (in this case, an x86). Since the

operating system and the user program are operating on di�erent architectures, the system

call interface is slightly di�erent than the normal interface.

2 Overview

This section provides an overview to the ow of control during a system call in the Nachos

operating system. This ow is shown in Figure 1 below.

2.1 Arguments

In the simulatedMIPSmachine, arguments to system calls are passed in prede�ned registers.

The user code packs the appropriate arguments into the registers prior to executing the

system call. The contents of the user registers prior to the system call are shown in Figure

2.

It should be noted that the system call number is always put into register 2.

2.2 Trapping

The simulated MIPS machine provides a syscall instruction. Execution of this instruction

results in an unconditional transfer of control to an error handling routine. In the Nachos

operating system, this routine is RaiseException. RaiseException disables interrupts

1

do_system_call(int syscall_num) {

reg4 = machine->ReadRegister(4);

reg5 = machine->ReadRegister(5);

reg6 = machine->ReadRegister(6);

reg7 = machine->ReadRegister(7);

switch (syscall_num) {

case SC_HALT :

 System_Halt();

 break;

case SC_Exec:

 returnvalue = System_Exec(reg4);

 break;

Machine::OneInstruction(Inst)

{

switch (Inst) {

 case OP_ADD:

 sum = registers[instr->rs] + ...

 return;

 case OP_ADDI:

 sum = registers[instr->rs] + ...

 return;

mipssim.cc

case OP_SYSCALL:

 RaiseExeption(SyscallException);

 return;

case OP_XOR:

 registers[instr->rd] = registers[...

 return;

default:

 ASSERT(FALSE);

}

Machine::RaiseExeption(Exception Type)

{

 ExceptionHandler(which)

}

ExeptionHandler(ExceptionType which)

{

 int type = machine->ReadRegister(2);

 if (which == SyscallException) {

 do_system_call(type);

}

Kernel Mode

User Mode

Trap to Kernel Mode

machine->WriteRegister(2, returnvalue)

}

systemcall.cc

exception.ccmipssim.cc

Figure 1: Control ow for system trap in Nachos

and stores the address of the exception in a special register. This value is only used in the

case of a page fault. Then, a call is made to the ExceptionHandler routine. Exception-

Handler checks the type of the exception (page fault, math error, system call, etc) and

dispatches the appropriate routine. In the case of a system call, the routine do system call

is invoked.

The operation of do system call is straightforward. The contents of the user registers

4,5,6, and 7 are stored in temporary variables, and based on the system call number (as

passed in register 2), the appropriate System function is called. For example, if the

contents of register 2 is SC Exec, then the System Exec function is called.

2.3 Returning

On return from a system call, the return value of the System function is recorded in register

2. If this value is negative, then it represents an error. The user stub then saves the negative

2

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

SYSCALL_NUM

arg1

arg2

arg3

arg4

return value

MIPS Registers Before System Call

MIPS Registers After System Call

User Space Kernel Space

void do_system_call(int syscall_num) {

 reg4 = machine->ReadRegister(4);
 reg5 = machine->ReadRegister(5);
 reg6 = machine->ReadRegister(6);

 switch (syscall_num) {
 case SC_HALT:
 System_Halt();
 break;
 case SC_EXIT:
 System_Exit((int)reg4);
 break;

 * * *

}

Figure 2: Registers prior to and after a system call

value in the global variable errno, and returns -1 to the user via register 2.

It should be noted that the errno variable provided by Nachos follows the Unix stan-

dard for returning errors from system calls.

3 Putting it all together: The read system call

Given a short program involving the read system call, this section will walk through the

process of a system trap.

//

// Sample User program

3

//

int main(void) {

char buf[80];

int fd; //file descriptor

//

// open the file, do some stuff, etc...

//

if (read(fd,buf,79) != -1) {

return(0);

} else {

return(1);

}

}

During compilation of the user program, the reference to theRead system call is replaced

by a jump to the subroutine in the code stub below. This stub represents a transfer of control

from the user program to the operating system, as described above.

//

// From: start.s Line 144

//

.globl Read

.ent Read

Read:

addiu $2,$0,SC_Read

syscall

bgez $2,$ReadPos

subu $3,$0,$2

sw $3,errno

li $2,-1

j $ReadDone

$ReadPos:

sw $0, errno

$ReadDone:

j $31

.end Read

In the code above, the value SC Read (a prede�ned system call number) is loaded into

register 2. Then the program executes the syscall instruction. In the simulated MIPS

machine, a large switch statement is used to parse instructions from the user program. The

syscall case is reproduced below.

4

On return from the system call, the stub checks the value of register 2. If the value

is negative, it stores the absolute value into the global program variable errno and stores

-1 into register 2 (i.e. it returns -1 to the program). If the value is non-negative, it falls

through.

//

// From: mipssim.cc Line 546

//

case OP_SYSCALL:

RaiseException(SyscallException, 0);

break;

It should be noted that the syscall instruction raises a SyscallException which will be

interpreted by the exception handler, as shown below. Note that the RaiseException call

exists only to store the address of the exception prior to turning interrupts o�. In this way,

a page fault can be properly serviced.

//

// From: machine.cc Line 100

//

void

Machine::RaiseException(ExceptionType which, int badVAddr)

{

registers[BadVAddrReg] = badVAddr;

DelayedLoad(0, 0); // finish anything in progress

interrupt->setStatus(SystemMode);

ExceptionHandler(which); // interrupts are enabled at this point

interrupt->setStatus(UserMode);

}

Finally, the ExceptionHandler is called (below). This code is responsible for dispatch-

ing the appropriate handler for the exception type. In the case of a read, the do system call

routine will be called, with the SC READ value from register 2 as the type argument.

//

// From: exception.cc Line 50

//

void

ExceptionHandler(ExceptionType which)

{

int type = machine->ReadRegister(2);

if (which == SyscallException) {

do_system_call(type);

5

The purpose of do system call is to recover the contents of the user-packed registers

and dispatch the appropriate system call based on the syscall num. In the case of read,

the contents of registers 4,5 and 6 are used to provide the �le descriptor, the user space

pointer, and the number of bytes to read, respectively.

void do_system_call(int syscall_num) {

int reg4, reg5, reg6, reg7, returnvalue;

// these are the argument registers used by the system call

// functions.

reg4 = machine->ReadRegister(4);

reg5 = machine->ReadRegister(5);

reg6 = machine->ReadRegister(6);

reg7 = machine->ReadRegister(7);

switch (syscall_num) {

case SC_Halt:

System_Halt();

break;

case SC_Exit:

System_Exit((int)reg4);

break;

<<removed>>

case SC_Read:

returnvalue = System_Read ((int) reg4, (char*) reg5, (int) reg6);

break;

}

4 Conclusion

This document has presented a brief overview of the Nachos system call interface. This

interface is based in part on the simulated MIPS architecture, and in part on the host

x86 architecture. Readers interested in more information on the MIPS architecture should

consult Mips Risc Architecture by Gerry Kane.

6

