
1

Overview of MINIX
I/O Software

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

CSCE 351
Operating System Kernels

2

MINIX I/O and Layered
Structure

3

MINIX Interrupt Handlers

◆ Most interrupt handlers generate and send wake-
up messages for blocked device tasks, as described
in Ch 2

◆ For Disk devices, the handler may be as simple as:
w_status = in_byte(w_wn->base+REG_STATUS);

interrupt(WINCHESTER);

return 1;

◆ However, not all work this way due to the
message passing overhead of this methodology.

4

Clock Handlers

◆ Clock Handler does intermediate work to reduce
message passing overhead
» Accumulates ticks in pending_ticks

» Sends message to clock task when
❖ An alarm expires, or

❖ Scheduling change required (quantum expires)

◆ If the handler doesn’t not notify the clock task of
every clock tick, does that mean the clock is not
accurate?

5

Keyboard Handler and other
Terminal Device Interrupt Handlers

◆ Sends no messages!

◆ Reads data from keyboard and filters events
» How?

» What is an event?

◆ Adds significant events/codes to a buffer and updates
tty_timeout (i.e., clears it)

◆ Clock handler sends message to the terminal task when
tty_timeout expires

◆ TTY task processes the queue of keyboard events and all
other terminal device queues as well (e.g., RS-232)

6

Device Drivers in MINIX

◆ Separate I/O task (device driver) for each class of I/O
devices

◆ Communicate via the file system
◆ Simple drivers are in their own file
◆ More complex drivers are subdivided into device

dependent (e.g., RAM Disk, hard disk, floppy disk, and
terminal) code and device independent/common code
(driver.c or tty.c)

◆ Still separate task for each type of device
» Why?

◆ Device drivers are linked into the kernel
» Why?

7

Process Structured vs.
Monolithic Structured

8

Generic Message Formats

Byte count or ioctl codeintm. COUNT

Minor device to useintm.DEVICE

Process requesting the I/Ointm.PROC_NR

Position on devicelongm. POSITION

Minor device to useintm.DEVICE

Operation requestedintm.m_type

MeaningTypeField

Requests

Same as PROC_NR in requestintm.REP_PROC_NR

Bytes transferred or error numberintm.REP_STATUS

Always TASK_REPLYintm.m_type

MeaningTypeField

Replies

9

Generic Device Driver
Structure
message mess; /* message buffer */

void io_task() {

initialize(); /* only done once */

while(TRUE){

receive(ANY, &mess); /* wait for a request for work */

caller = mess.source; /* process sending msg */

switch(mess.type){

case READ: rcode = dev_read(&mess);break;

case WRITE: rcode = dev_write(&mess);break;

/* Other cases go here, e.g., OPEN, CLOSE, IOTCTL */

default: rcode = ERROR;

}

mess.type = TASK_REPLY;

mess.status = rcode; /* result code */

send(caller, &mess); /* send reply to caller */

}

}

10

Block Devices in MINIX

◆ MINIX always has at least three block device
tasks compiled into the kernel:
» RAM disk driver
» Floppy disk driver
» Hard disk driver(s)

◆ Each block device driver does device specific
initialization and then calls a shared I/O function
that implements the main loop
» A data structure that points to the device specific

routines to handle reads, writes, etc. is passed as an
input parameter

11

MINIX Main I/O Loop
Block Device Shared Function
message mess; /* message buffer */

void shared_io_task(struct driver_table *entry_points) {

/* initialization is done before calling this routine */

while(TRUE){

receive(ANY, &mess); /* wait for a request for work */

caller = mess.source; /* process sending msg */

switch(mess.type){

case READ: rcode =(*entry_points->dev_read)(&mess);break;

case WRITE: rcode=(*entry_points->dev_write)(&mess);break;

/* Other cases go here, e.g., OPEN, CLOSE, IOTCTL */

default: rcode = ERROR;

}

mess.type = TASK_REPLY;

mess.status = rcode; /* result code */

send(caller, &mess); /* send reply to caller */

}

}

12

Six Operations Supported by
MINIX Block Device Drivers

1. OPEN

2. CLOSE

3. READ

4. WRITE

5. IOCTL

6. SCATTERED_IO

13

Common Block Device SW

◆ The driver structure that contains the pointers to
device specific routines is defined in driver.h

◆ The main loop (shared I/O function) is defined in
driver.c

» It does not return to the caller

◆ Device specific code is in separate files
» at_wini.c

» floppy.c

» memory.c

14

Driver Library

◆ “Files drvlib.h and drvlib.c contain
system-dependent code that supports disk partions
on IBM PC compatible computers.”

◆ Reasons to partition a disk:
» Large disks are cheaper/byte than small disks

❖ Use one disk for multiple OS rather than use two disks

» Put different file system types (for different OS) on one
disk

» OS disk size limits, e.g., 1-GB file system limit
» Convenient to put a portion of a file system in its own

partition

