
1

Interprocess Synchronization
and Communication

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

CSCE 351
Operating System Kernels

2

Producer/Consumer
Implementation
process Producer
var c : char

begin
loop

<produce a character “c”>
while nextIn+1 mod n = nextOut do
NOOP

end while
buf[nextIn] := c
nextIn := nextIn+1 mod n

end loop
end Producer

process Consumer
var c : char

begin
loop
while nextIn = nextOut do
NOOP

end while
c := buf[nextOut]
nextOut := nextOut+1 mod n

<consume a character “c”>
end loop

end Consumer

globals
buf : array [0..n-1] of char;
nextIn, nextOut : 0..n-1 := 0n-1

n-2

nextIn nextOut

0 1 2 ...

3

process Producer
var c : char

begin
loop

<produce a character “c”>
while count = n do
NOOP

end while
buf[nextIn] := c
nextIn := nextIn+1 mod n
count := count + 1

end loop
end Producer

process Consumer
var c : char

begin
loop
while count = 0 do
NOOP

end while
c := buf[nextOut]
nextOut := nextOut+1 mod n
count := count - 1

<consume a character “c”>
end loop

end Consumer

globals
buf : array [0..n-1] of char;
nextIn,nextOut : 0..n-1 := 0
count : integer := 0

n-1

n-2

nextIn nextOut

0 1 2 ...

Producer/Consumer Implementation
with a shared counter

4

The Critical Section Problem

◆ One implementation of the shared counter

process Producer
begin

:
<count := count + 1>

MOV R1, @count
ADD R1, 1
MOV @count, R1
:

end Producer

process Consumer
begin

:
<count := count - 1>

MOV R2, @count
SUB R2, 1
MOV @count, R2
:

end Consumer

5

Algorithms for Mutual
Exclusion

◆ General algorithm structure

◆ Correctness conditions
» Does it guarantee mutual exclusion?

» Is it expedient?

» Does it provide bounded waiting?

process Pi
begin
loop

:
Entry_Protocol
<critical section>
Exit_Protocol
:

end loop
end Pi

6

Mutual Exclusion

◆ Disable Interrupts

process P1
begin
loop
Disable Interrupts
<critical section>
Enable Interrupts

end loop
end P1

process P2
begin
loop
Disable Interrupts
<critical section>
Enable Interrupts

end loop
end P2

7

Message Passing
◆ Two fundamental communication & synchronization

paradigms
» Shared memory

❖ Efficient, familiar

❖ Not always available

❖ Potentially insecure

» Message passing
❖ Awkward, less standardized

❖ Extensible to communication in distributed systems

❖ Syntax:
send(process : process_id, message : string)

receive(process : process_id, var message : string)

8

Message Passing Example
Ye Olde Producer/Consumer System

process producer
begin
loop
<produce a char “c”>

send(consumer, c)
end loop

end producer

process consumer
begin
loop
receive(producer, mesg)

<consume message “mesg”>
end loop
end consumer

OS Kernel

9

Issues
Synchronization semantics

◆ When does a send/receive operation terminate?
» Blocking

❖ sender waits until its message is received

❖ receiver waits if no message is available

» Non-blocking
❖ send operation “immediately” returns

❖ receive operation returns if no message is
available

» Variants
❖ send()/receive() with timeout

OS KernelSender Receiver

OS KernelSender Receiver

10

Send message to recvr.
Wait until message is
accepted.

Broadcast message to all
receivers. Wait until
message is accepted by all.

Send message to recvr.

Broadcast message to all
receivers.

Blocking Nonblocking

Explicit

Implicit

Synchronization

N
am

in
g

Semantics of Message Passing
send(recvr,mesg)

11

Wait for a message from
sender

Wait for a message from any
sender

If there is a message from
sender then receive it, else
continue

If there is a message from
any sender then receive it,
else continue

Blocking Nonblocking

Explicit

Implicit

Synchronization

N
am

in
g

Semantics of Message Passing
receive(sender,mesg)

