CSCE 351
Operating

System Kernels

| nter process Synchronization

and Communication

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

Producer/Consumer
| mplementation

process Producer
var ¢ : char
begi n
| oop
<produce a character “c>
while next/n+l mod n = nextQut do
NOOP
end while
buf[nextln] :=c
nextln := nextln+1 nod n
end | oop
end Producer

nextin—— —— nextOut

S—

process Consuner
var ¢ : char
begi n
| oop
whil e next/n = next Qut do
NOOP
end while
c : = buf[next Qut]
nextQut := nextQut+1 nod n
<consume a character “c*
end | oop
end Consuner

gl obal s
buf : array [0..n-1] of char
nextln, nextQut : 0..n-1:=20

Producer/Consumer | mplementation

with a shared counter

process Producer

process Consuner

var ¢ : char var ¢ : char
begi n begi n
| oop | oop
<produce a character “c> while count = 0 do
while count = n do NOOP
NOOP end while
end while c : = buf[next Qut]
buf[nextln] := ¢ nextQut := nextQut+l nod n
nextln := nextln+l nmod n count = count - 1
count := count + 1 <consume a character “c®
end | oop end | oop
end Producer end Consuner
nextin— —— nextOut gl obal s
buf : array [0..n-1] of char
HJJ 0 I 1| 2 |~-| nextIn, nextQut : 0..n-1:=0
count : integer := 0
The Critical Section Problem
0 One implementation of the shared counter
process Producer process Consuner
begin begin
<count := count + 1> <count := count - 1>
MOV R1, @ount MOV R2, @ount
ADD R1, 1 SUB R2, 1

MOV @ount, R1

end Producer

MOV @ount, R2

end Consuner

Algorithmsfor Mutual
Exclusion

0 General algorithm structure

process Pi
begi n
| oop
Entry_Prot oco

<critical section>
Exit _Protoco

end | oop
end Pi

0 Correctness conditions
» Does it guarantee mutual exclusion?
» Is it expedient?
» Does it provide bounded waiting?

Mutual Exclusion

0 Disable Interrupts

process Pi1 process P2
begi n begi n
| oop | oop

Di sable Interrupts
<critical section>
Enabl e Interrupts
end | oop
end P1

Di sable Interrupts
<critical section>
Enable Interrupts
end | oop
end P2

M essage Passing

0 Two fundamental communication & synchronization
paradigms
» Shared memory
0 Efficient, familiar
0 Not always available
0 Potentially insecure

» Message passing
0 Awkward, less standardized
0 Extensible to communication in distributed systems

0 Syntax:
send(process : process_id, nessage : string)

recei ve(process : process_id, var nessage : string)

M essage Passing Example
Y e Olde Producer/Consumer System

process producer process consumner
begi n begi n
| oop I oop
<produce a char “c’> recei ve(producer, nesg)
send(consuner, c) <consume message “mesg”
end | oop end | oop
end producer end consuner
OS Kernel

[L1T]

| ssues
Synchronization semantics

0 When does a send/receive operation terminate?

» Blocking
O sender waits until its message is received
O receiver waitsif no message is available

Sender Receiver

OS Kernel

O

» Non-blocking
O send operation “immediately” returns

O receive operation returns if no message is
available

» Variants
0 send() /r ecei ve() with timeout

Semantics of M essage Passing
send(recvr, nesg)

Synchronization

Blocking Nonblocking
Explicit Send message to recvr. Send message to recvr.
Xplict Wait until messageis
g’ accepted.
£
©
p
Implicit Brogdcast message _to al Broz_adcast message to al
receivers. Wait until receivers.
message is accepted by all.

10

Semantics of M essage Passing
recei ve(sender, nesqg)

Synchronization

Blocking Nonblocking
Explicit Wait for a message from If there is amessage from
Xplici sender sender then receive it, else
2 continue
I=
©
b
Implicit Wait for a message from any If there is a message from
sender any sender then receiveit,
else continue

1

