
1

Processes, Context Switches
and Inter rupts

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

CSCE 351
Operating System Kernels

2

Processes

◆ The basic agent of work, the basic building block
◆ Process characterization

» Program code
» Processor/Memory state
» Execution state

◆ The state transition diagram

RunningReady

Waiting

3

Process Actions

◆ Create and Delete

◆ Suspend and Resume

◆ Process synchronization

◆ Process communication

4

Multiprogramming

5

Physical v. Logical Concurrency
Why is logical concurrency useful?

◆ Structuring of computation

◆ Performance

» Single process I/O

process P
begin

:
Read(var)
:

end P

system call Read()
begin
StartIO(input device)
WaitIO(interrupt)
EndIO(input device)
:

end Read

6

Physical v. Logical Concurrency
Performance considerations

◆ Multithreaded I/O

process P
begin

:
StartRead()
<compute>
Read(var)
:

end P

system process Read()
begin
loop
WaitForRequest()
System_Read(var)
WaitForRequestor()
:

end loop
end Read

system call StartRead()
begin
RequestIO(input device)

end StartRead

system call Read()
begin
SignalReader(input device)

end Read

7

Process Creation Paradigms

◆ COBEGIN/COEND

◆ FORK/JOIN

◆ Explicit process
creation begin

:
P
:

end

begin
:
fork(foo)
:
join(foo)
:

end

cobegin
S1 ||

S2 ||

:
Sn

coend

procedure foo()
begin

:
:

end foo

process P
begin

:
:

end P

8

Threads

◆ 3 processes
» Each with one thread

◆ 1 process
» Three threads

9

Process Scheduling
Implementing and managing state transitions

RunningReady

Waiting

Head

Tail
ready queue

Head

Tail

device/condition
queues

prev ptr

reg values

mem ptrs

next ptr

...

prev ptr

reg values

mem ptrs

next ptr

...

prev ptr

reg values

mem ptrs

next ptr

...

...

...
Tail

Head

name name name

10

Why Schedule?
Scheduling goals

◆ Example: two processes execute concurrently

◆ Performance without scheduling

◆ Performance with scheduling

process P1
begin
for i := 1 to 5 do
<read a char>
<process a char>

end for
end P1

process P2
begin
<execute for 1 sec >

end P2

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

P1

P2

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

P1

P2

11

Types of Schedulers

◆ Long term schedulers
» adjust the level of multiprogramming through

admission control

◆ Medium term schedulers
» adjust the level of multiprogramming by suspending

processes

◆ Short term schedulers
» determine which process should execute next

12

Shor t Term Scheduling
When to schedule

When a process makes a transition...
1. from running to waiting
2. from running to ready
3. from waiting to ready

(3a. a process is created)
4. from running to terminated

RunningReady

Waiting

Head

Tail
ready queue

Head

Tail

device/condition
queues

13

Shor t Term Scheduling
How to schedule — Implementing a context switch

context_switch(queue : system_queue)
var next : process_id
begin
DISABLE_INTS
insert_queue(queue, runningProcess)
next := remove_queue(readyQueue)
dispatch(next)
ENABLE_INTS

end context_switch

dispatch(proc : process_id)
begin
<save memory image of runningProcess>
<save processor state of runningProcess>
<load memory image of proc>
<load processor state of proc>
runningProcess := proc

end dispatch

RunningReady

Waiting

Head

Tail
ready queue

Head

Tail

device/condition
queues

14

◆ Case 1: Yield

“P2: running”

main()

read()

startIO()

switch()

dispatch()

waitIO()

main()

Implementing a Context Switch
Dispatching

dispatch()
begin
<save state of P2>
<load state of P1>

:
end dispatch

P2’s dispatch:
“P1”

15

main()

read()

startIO()

switch()

dispatch()

waitIO()

main()

deposit()

wait()

switch()

dispatch()

dispatch()
begin
<save state of P1>
<load state of P2>

:
end dispatch

◆ Case 1: Yield

“P1: running” “P2”
P1’s dispatch:

Implementing a Context Switch
Dispatching

16

“P1” “P2 : running”

dispatch()
begin
:
RunningProcess:= P2

end dispatch

P2’s dispatch:

main()

read()

startIO()

switch()

dispatch()

waitIO()

main()

deposit()

wait()

switch()

dispatch()

dispatch()
begin
<save state of P1>
<load state of P2>

:
end dispatch

◆ Case 1: Yield

P1’s dispatch:

Implementing a Context Switch
Dispatching

17

main()

read()

startIO()

switch()

waitIO()

“P2: running”

main()

deposit()

wait()

switch()

dispatch()

◆ Case 1: Yield

Implementing a Context Switch
Dispatching

“P1”
context_switch(queue : system_queue)
var next : process_id
begin
DISABLE_INTS
insert_queue(queue, runningProcess)
next := remove_queue(readyQueue)
dispatch(next)
ENABLE_INTS

end context_switch

18

“P1” “P2 : running”

main()

read()

startIO()

waitIO()

main()

deposit()

wait()

switch()

dispatch()

◆ Case 1: Yield

Implementing a Context Switch
Dispatching

19

“P1” “P2 : running”

main()

read()

startIO()

main()

deposit()

wait()

switch()

dispatch()

◆ Case 1: Yield

Implementing a Context Switch
Dispatching

20

“P1” “P2 : running”

main()

read()

main()

deposit()

wait()

switch()

dispatch()

◆ Case 1: Yield

Implementing a Context Switch
Dispatching

21

dispatch()
begin
<save state of P2>
<load state of P1>

:
end dispatch

◆ Case 2: Preemption

main() main()

bar()

timerInt()

switch()

dispatch()

“P1” “P2: running”
P2’s dispatch:

Implementing a Context Switch
Dispatching

22

main()

foo()

timerInt()

switch()

dispatch()

dispatch()
begin
<save state of P1>
<load state of P2>

:
end dispatch

◆ Case 2: Preemption

main()

bar()

timerInt()

switch()

dispatch()

“P1: running” “P2”
P1’s dispatch:

Implementing a Context Switch
Dispatching

23

main()

foo()

timerInt()

switch()

dispatch()

dispatch()
begin
<save state of P1>
<load state of P2>

:
end dispatch

◆ Case 2: Preemption

main()

bar()

timerInt()

switch()

dispatch()

“P1” “P2 : running”
P1’s dispatch:

Implementing a Context Switch
Dispatching

dispatch()
begin
:
RunningProcess:= P2

end dispatch

P2’s dispatch:

24

main()

foo()

timerInt()

switch()

dispatch()

◆ Case 2: Preemption

main()

bar()

“P1” “P2 : running”

Implementing a Context Switch
Dispatching

25

Inter rupts

◆ Device sends a signal to an interrupt controller

◆ Controller interrupts the CPU via the INT pin

26

Kernel response to an
Inter rupt - sketch

◆ CPU stacks PC and other key registers

◆ CPU loads new PC from interrupt vector table

◆ Assembly language procedure saves registers

◆ Assembly language procedure sets up INT stack

◆ C ISR runs (usually reads and buffers input)

◆ Scheduler marks any newly ready tasks

◆ Scheduler decides which process will run next

◆ C procedure returns to the assembly code

◆ Assembly language procedure switches to new
current process

27

Response to an Inter rupt -
details for Intel processors

◆ Controller interrupts the CPU via the INT pin

◆ CPU disables interrupts and pushes PC and other key registers onto the
current process stack

◆ CPU signals the controller via INTA (interrupt acknowledge) signal to
put interrupt number on the system data bus

◆ CPU reads the system data bus and uses that value as an index into the
interrupt vector table to find the pointer of the interrupt handler, which
is an assembly routine wrapper for the ISR (i.e., an indirect jump)

◆ The interrupt handler fills out the stack frame with general registers,
switches to an interrupt stack and calls the C ISR

◆ When the ISR completes, the handler switches to a process stack
frame, pops the general registers, and executes the iretd (return from
interrupt) instruction to pop the remaining instructions in the stack
frame to restore the system state

28

Inter rupts vs System Calls

Interrupt System Call

