CSCE 351
Operating System Kernels

Pr ocesses, Context Switches
and Interrupts

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

Pr ocesses

0 The basic agent of work, the basic building block

O Process characterization
» Program code
» Processor/Memory state
» Execution state

0 The state transition diagram

Running

Process Actions

0 Create and Delete
0 Suspend and Resume

0 Process synchronization
0 Process communication

Multiprogramming

One program counter
N—

q
q

Four program counters

Process
A switch
B

g

BY

I

(a)

(b)

|

DY

Process

> W O O

Time ——

Physical v. Logical Concurrency
Why islogical concurrency useful ?

0 Structuring of computation

0 Performance

process P
begi n

Réad(var)

end P

» Single process I/O

systemcall Read()
begin
St ar t | Q(input device)
Wi t | (interrupt)
Endl Q(input device)

end. Read

Physical v. Logical Concurrency

Perfor mance consider ations

0 Multithreaded 1/0O

process P
begi n

Start Read()
<compute>
Read(var)

end P

systemcal |l StartRead()
begi n

Request | O(input device)
end StartRead

system cal |l Read()
begi n

Si gnal Reader (input device)
end Read

begin
| oop

system process Read()

Wi t For Request ()
Syst em Read(var)
Wi t For Request or ()

end | oop
end Read

Process Creation Paradigms

0 COBEGIN/COEND cobegilT
S ||
s
coend
0 FORK/JOIN o
egin procedure foo()
: begi n
fork(foo) :
jﬁin(foo) end.foo
.. end
0 Explicit process
creation begi n process P
: begi n
P
ena end.P
Threads
Computer Computer
; ;\
Program Thread Process
counter
@ (b)
0 3 processes 0 1 process

» Each with one thread

» Threethreads

Process Scheduling

| mplementing and managing state transitions

>

Running

Head —

Tail —
ready queue
Head —» - g device/condition
Tail —» — — Qqueues
name name name

mem ptrs mem ptrs mem ptrs
v reg values reg values reg values
Head »| next ptr » nextptr — -+ —»| nextptr

- prev ptr |« prev ptr [¢— - ——| prev ptr 4—:

Tail

Why Schedule?
Scheduling goals

0 Example: two processes execute concurrently

process P: process P2
begi n begi n
for i :=1to 5 do <executefor 1 sec >
<read a char> end P2
<process a char>
end for
end Pu

0 Performance without scheduling

PO O O B3 3
P2|||||||||I II

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

v

0 Performance with scheduling

PO 1 3 3 3
p, OO OO O O3 | |

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

v

10

Types of Schedulers

0 Long term schedulers

» adjust the level of multiprogramming through
admission control

0 Medium term schedulers

» adjust the level of multiprogramming by suspending
processes

0 Short term schedulers
» determine which process should execute next

11

Short Term Scheduling
When to schedule

>

Running

Head —
Tail —

ready queue

Head —> — - device/condition
Tail —» — — queues

When a process makes atransition...
1. from running to waiting
2. from running to ready
3. from waiting to ready
(3a. aprocessis created)
4. from running to terminated

12

Short Term Scheduling

How to schedule — Implementing a context switch

Running

Head —
Tail —

ready queue

Head —> g - device/condition
Tail —» — — queues

context _switch(queue : system queue) di spatch(proc : process_id)

var next : process_id begi n

begi n <save memory image of r unni ngPr ocess>
DI SABLE_I NTS <save processor state of r unni ngPr ocess>
i nsert_queue(queue, runni ngProcess) <load memory image of pr oc>
next := renove_queue(readyQueue) <load processor state of pr oc>
di spat ch(next) runni ngProcess : = proc
ENABLE_| NTS end di spatch

end context_swi tch

13

| mplementing a Context Switch
Dispatching

0 Casel: Yield

di spat ch()
switch()
wai tl ()
start1 ()
read()
mai n() mai n()
“P1” “P2: running”
P2’ s dispatch:
di spat ch()
begin

<save state of P2>
<load state of P1>

end di sbat ch

14

| mplementing a Context Switch

Dispatching
0 Casel: Yield
di spat ch()
di spat ch() swi tch()
switch() wai tl Q)
wai t () start! Q)
deposi t () read()
mai n() mai n()
“P1: running” “P2"
P1’s dispatch:
di spat ch()
begin

<save state of P1>
<load state of P2>

end di sbat ch

15

| mplementing a Context Switch

Dispatching
0 Casel: Yield
di spat ch()
di spat ch() swi t ch()
switch() wai tl ()
vai t () start! Q)
deposi t () read()
mai n() mai n()
“P1” “P2 : running”
P1’s dispatch: P2's dispatch
gie;ipﬁt °h0 di spat ch()
<save state of P1> begl n

<load state of P2>

end di sbat ch

Runni ngProcess: = P2
end di spatch

16

| mplementing a Context Switch

Dispatching
0 Casel: Yied

di spatch() switch()

switch() wai t 1 Q)
wai t () start1)

deposit () read()
mai n() mai n()
“P1” “P2: running”

cont ext _swi tch(queue : system queue)
var next : process_id
begi n
DI SABLE_| NTS
i nsert_queue(queue, runningProcess)
next := renove_queue(readyQueue)
di spat ch(next)
ENABLE_| NTS

end context_switch o

| mplementing a Context Switch

Dispatching
0 Casel: Yield

di spat ch()

switch() wai tl ()
wai t () startl Q)

deposit () read()
mai n() mai n()
“P1” “P2 : running”

| mplementing a Context Switch

Dispatching
0 Casel: Yied
di spat ch()
switch()
wai t () start! Q)
deposi t () read()
mai n() mai n()

“pP1” “P2 : running”

19

| mplementing a Context Switch
Dispatching

0 Casel: Yield

di spat ch()
switch()
wait ()

deposi t () read()

mai n() mai n()

“pP1” “P2 : running”

20

| mplementing a Context Switch
Dispatching

0 Case 2: Preemption

di spat ch()
switch()
timerlnt()
bar ()
mai n() mai n()
“P1” “P2: running”
P2’ s dispatch:
di spat ch()
begin

<save state of P2>
<load state of P1>

end di sbat ch

21

| mplementing a Context Switch
Dispatching

0 Case 2: Preemption

di spat ch() di spat ch()
switch() switch()
tinmerint() timerlnt()
foo() bar ()
mai n() mai n()
“P1: running” “pP2’
P1's dispatch:
di spat ch()

begin
<save state of P1>
<load state of P2>

end di sbat ch

22

| mplementing a Context Switch
Dispatching

0 Case 2: Preemption

di spat ch() di spat ch()
swi tch() switch()
tinerint() timerlnt()
foo() bar ()
mai n() mai n()
“P1” “P2 : running”
Pl’ﬁd'Spamh: P’ s dispatch:
g;gf’;“ ch() di spat ch()

<save state of P1> begin
<load state of P2> :)

: Runni ngPr ocess: = P2
end di spatch end di spatch

23

| mplementing a Context Switch
Dispatching

0 Case 2: Preemption

di spat ch()

switch()

tinmerint()
foo() bar ()
mai n() mai n()

“pP1” “P2 : running”

24

| nterrupts

0 Device sendsasignal to an interrupt controller
0 Controller interrupts the CPU viathe INT pin

N

Interrupt

INT

AN
CPU
N—

/—
N—

INTA T
Interrupt
ack

DR FOoA0<a

weo

INT

Master
interrupt
controller

ACK

(

INT

Slave
interrupt
controller

ACK

IRQQ (
IRQ 1 (
IRQ 3 (
IRQ 4 (tty 1
IRQ5 (
IRQ 8 (floppy)
IRQ 7 (printer)

clock)
keyboard)

r<— IRQ 8 (real time clock)
<—— IRQ 9 (redirected IRQ 2)
r——IRQ 10

< IRQ 11

~——IRQ 12

< IRQ 13 (FPU exception)
~—— |RQ 14 (AT Winchester)
<« IRQ 15

25

Kernel responseto an

I nterrupt - sketch

0 CPU stacks PC and other key registers

0 CPU loads new PC from interrupt vector table
0 Assembly language procedure saves registers

0 Assembly language procedure setsup INT stack
0 C ISR runs (usualy reads and buffers input)

0 Scheduler marks any newly ready tasks

0 Scheduler decides which process will run next

0 C procedure returns to the assembly code

0 Assembly language procedure switches to new

current process

26

Responseto an Interrupt -
detailsfor Intel processors

Controller interrupts the CPU viathe INT pin

0 CPU disablesinterrupts and pushes PC and other key registers onto the
current process stack

0 CPU signasthe controller viaINTA (interrupt acknowledge) signal to
put interrupt number on the system data bus

0 CPU reads the system data bus and uses that value as an index into the
interrupt vector table to find the pointer of the interrupt handler, which
is an assembly routine wrapper for the ISR (i.e., an indirect jump)

O Theinterrupt handler fills out the stack frame with genera registers,
switches to an interrupt stack and callsthe C ISR

O When the ISR completes, the handler switches to a process stack
frame, pops the general registers, and executesthei r et d (return from
interrupt) instruction to pop the remaining instructionsin the stack
frame to restore the system state

|nterruptsvs System Calls

Device:
Send electrical signal to interrupt controller.

Controller:
1. Interrupt CPU.

Caller:
1. Put message pointer and destination of
message into CPU registers.

2. Send digital identification of interrupting
Kernel:

device.
1. Save registers.
2. Execute driver software to read /O device.
3. Send message.
4. Restart a process (not necessarily
interrupted process).

2. Execute software interrupt instruction.
Kernetl:

1. Save registers.

2. Send and/or receive message.

3. Restart a process {not necessarily calling
process).

@
Interrupt

(b)

System Call

28

