CSCE 351
Operating System Kernels

Terminals

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

Terminal Hardware
Memory Mapped Terminals

- CPU writes data to special memory called Video RAM
- The video controller (often a graphics controller now) reads the characters (or commands) from the video RAM and displays (executes) them.

IBM PC Monitor Interface

- Simplest mode is the character-mapped console mode: 25 lines of 80 characters each.
- Each character takes two bytes of storage
 - 1 byte for the ASCII code
 - 1 byte for the attribute: color, reverse video, blinking, etc.
<table>
<thead>
<tr>
<th>IBM PC Monitor Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ Other modes are bit-oriented or graphic modes of various resolution: e.g., 480x640 or 768x1024</td>
</tr>
<tr>
<td>◆ Each pixel is individually controlled.</td>
</tr>
<tr>
<td>» A number associated with the pixel represents its display attributes</td>
</tr>
<tr>
<td>» 1-32 bits per pixel are used</td>
</tr>
<tr>
<td>❖ 1 bit/pixel is for monochrome displays</td>
</tr>
<tr>
<td>❖ 24 bits/pixel is common with a byte for each color attribute</td>
</tr>
<tr>
<td>❖ 32 bits/pixel is for “true color” displays</td>
</tr>
<tr>
<td>» 768x1024 resolution with 24 bits/pixel requires 2MB of RAM just to hold the current image.</td>
</tr>
<tr>
<td>» Controllers often support double buffering to prevent flickering when screen changes occur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBM PC Keyboard Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ Serial interface to a controller chip on main board</td>
</tr>
<tr>
<td>◆ Keyboard contains an embedded microprocessor</td>
</tr>
<tr>
<td>◆ Interrupt is generated for each key “action”</td>
</tr>
<tr>
<td>◆ Keyboard sends the key code, not the ASCII code in the I/O register</td>
</tr>
<tr>
<td>◆ Flexible interface</td>
</tr>
<tr>
<td>» Allows sending raw data to applications</td>
</tr>
<tr>
<td>» Allows sending processed (line-oriented) data to applications</td>
</tr>
</tbody>
</table>
RS-232 Terminals

- Keyboard and display are a single device connected to the computer via a serial RS-232 interface line.
- Universal Asynchronous Receive Transmitters (UARTs) to do character to serial and serial to character conversions

RS-232 Terminals

- Glass ttys (or dumb terminals)
 » Functionally the same as hardcopy ttys
 » Glass ttys and hardcopy ttys are both obsolete
- Intelligent Terminals
 » Have CPU, memory, and SW in ROM
 » Supports some escape sequences
X Terminals

- Keyboard driver and display driver are almost independent.
- Many keyboard drivers use a loadable key map that maps the key codes to characters.
- Keyboard driver has two modes:
 - Character-oriented
 - Called raw mode in UNIX
 - non-canonical mode in POSIX
 - Line-oriented
 - Called cooked mode in UNIX
 - Called canonical mode in POSIX
Buffering for Cooked mode

Echoing in Cooked mode

- Echoing displays the characters typed
 - Editing and other “special” characters are not displayed
 - A special character, such as <ctrl>v, is used to display normally non-visible characters
 - Complicated by trying to display more characters on the line than the physically possible
 - Line wrapping
 - Discarding “extra” characters
 - Carriage return and linefeed are assumed when one types the “enter” key
 - Driver must make sure that the cursor is correctly positioned on the display, which may mean echoing both carriage return and a line feed.
The termios structure

```
struct termios {
    tcflag_t c_iflag; /* input modes */
    tcflag_t c_oflag; /* output modes */
    tcflag_t c_cflag; /* control modes */
    tcflag_t c_lflag; /* local modes */
    speed_t c_ispeed; /* input speed */
    speed_t c_ospeed; /* output speed */
    cc_t c_cc[NCCS]; /* control characters */
};
```

Output Terminal Drivers

- RS-232 terminal drivers are very different from memory-mapped terminals
- RS-232 terminals
 - Output buffers are associated with each terminal
 - Characters written or echoed are copied to a buffer and transmitted one at a time, synchronously
- Memory-mapped terminals
 - Characters are written to the video RAM
 - Driver keeps track of
 - Cursor position
 - Backspace, CR, NL processing
 - Scrolling
- Most drivers support ANSI defined Escape sequences for display, see Figure 3-36
Overview of MINIX
Terminal Driver

◆ Terminal driver is the largest and most complex driver in MINIX (and most operating systems)
 » Handles keyboard, display, and RS-232

◆ Contained in 6 files and accepts 7 messages:
 » Read from the terminal (from FS for user)
 » Write to the terminal (from FS for user)
 » Set terminal parameters for IOCTL (from FS for user)
 » I/O occurred during last clock tick (from clock interrupt)
 » Cancel previous request (from FS when a signal occurs)
 » Open a device
 » Close a device

Terminal Read
with no pending characters
Terminal Read
input call tree

Terminal (console) Output

- Console output is simpler than terminal input
- Console is memory mapped, so no interrupts
- User output example:
 » User calls `printf`
 » `printf` calls `WRITE` to send a message to the FS
 » The FS sends a message to the terminal driver, `tty_task`
 » The `tty_task` copies the characters from user space to video RAM
Overview of Driver Calls for Terminal Output

- tty_task
 - do_write
 - handle_events
 - cons_write
 - out_char
 - Escape sequences
 - Special characters
 - End of line
 - pause_escape
 - scroll_screen
 - flush

- "Easy" characters