More on Asymptotic Notation

January 23, 2002

- **How to use asymptotic notation for algorithm analysis.**

 Asymptotic notation is used to determine rough estimates of relative running time of algorithms. In class we saw an example of worst-case analysis of pseudocode that led to a big-O estimate. A worst-case analysis of any algorithm will always yield such an estimate, because it gives an upper bound on the running time \(T(n) \) of the algorithm, that is \(T(n) \leq g(n) \), and so \(T(n) \in O(g(n)) \). In some cases, an exact analysis of the running time is possible, and then we get \(T(n) = g(n) \), so \(T(n) \in \Theta(g(n)) \). Here is an example:

  ```
  a <- 0 1 unit 1 time
  for i <- 1 to n do 1 unit n times
    for j <- 1 to i do 1 unit n(n+1)/2 times
    a <- a+1 1 unit n(n+1)/2 times
  ```

 where the times for the inner loop have been computed as follows: for each \(i \) from 1 to \(n \), the loop is executed \(i \) times, so the total number of times is

 \[
 1 + 2 + 3 + \ldots + n = \sum_{i=1}^{n} i = n(n+1)/2
 \]

 (see Appendix A.1 in the book for this, and other summation formulas). Hence in this case

 \[
 T(n) = 1 + n + 2n(n+1)/2 = n^{2} + 2n + 1.
 \]

 If we write \(g(n) = n^{2} + 2n + 1 \), then \(T(n) \in \Theta(g(n)) \), that is \(T(n) \in \Theta(n^{2} + 2n + 1) \). We actually write \(T(n) \in \Theta(n^{2}) \), as recommended by the following rule.

- **Be as simple and as precise as possible in analysis.**

 Although the definitions of asymptotic notation allow one to write, for example, \(T(n) \in O(3n^{2} + 2) \), in practice we never write something like that; we simplify the function in between the parentheses as much as possible (in terms of rate of growth), and write instead \(T(n) \in O(n^{2}) \). Similarly, we don’t write, for example, \(T(n) \in \Theta(4n^{3} - n^{2} + 3) \), but \(T(n) \in \Theta(n^{3}) \). Also, it is wrong to write, for instance, \(O(\sum_{i=1}^{n} i) \); write instead \(O(n^{2}) \), after computing the sum.

 Also, the analysis should be as precise as possible, in the sense that it should provide the closest asymptotic bounds for functions; for example, while it is true that \(3 \in O(n^{2}) \), we know that 3 is actually constant time, rather than quadratic time, so \(3 \in O(1) \) or \(3 \in \Theta(1) \) is the right analysis.

 In the spirit of the simplicity rule above, when we are to compare, for instance, two candidate algorithms \(A \) and \(B \) having running times \(T_{A}(n) = n^{2} - 3n + 4 \) and \(T_{B}(n) = 5n^{3} + 3 \), rather than writing \(T_{A}(n) \in O(T_{B}(n)) \), we write \(T_{A}(n) \in \Theta(n^{2}) \), and \(T_{B}(n) \in \Theta(n^{3}) \), and then we
conclude that A is better than B, using the fact that n^2 (quadratic) is better than n^3 (cubic) time, since $n^2 \in O(n^3)$. A comparison of the most common functions is given next.

- **Common functions.**
 The following relations hold for some of the most common functions encountered in algorithm analysis (where “\leq” means “better than”):

 $$ O(1) \leq O(\log n) \leq O(n) \leq O(n \log n) \leq O(n^2) \leq O(2^n). $$

 The same relations hold for Θ instead of O. Also, the following general rules apply:
 1. logarithmic is better than polynomial: $O(\log^k n) \leq O(n^l)$, for any constants k, l where $l > 0$;
 2. lower-degree polynomial is better than higher-degree polynomial: $O(n^k) \leq O(n^l)$, for any constants k, l with $k < l$;
 3. polynomial is better than exponential: $O(n^k) \leq O(l^n)$, for any constants k, l, with $l > 1$.
 The same rules apply for Θ instead of O.

- **Other things to prove about asymptotic bounds.**
 1. Prove that $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$.

 Proof: By definition, $f(n) \in O(g(n))$ iff there exist constants $c, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$, for all $n \geq n_0$. Dividing by c, we get $0 \leq (1/c)f(n) \leq g(n)$, for all $n \geq n_0$. But this is just the definition of $g(n) \in \Omega(f(n))$, in which $c = 1/c$.

 2. Prove that $3n^3 \notin O(n^2)$.

 Proof: By contradiction. Suppose $3n^3 \in O(n^2)$. Then, by definition, we have constants $c, n_0 > 0$ such that $0 \leq 3n^3 \leq cn^2$, for all $n \geq n_0$. Dividing by n^2 we get $0 \leq 3n \leq c$, for all $n \geq n_0$. This means that $n \leq c/3$, for all $n \geq n_0$. But this is obviously not true for $n > \max\{c/3, n_0\}$.

 3. Fill in the most appropriate symbol from $\{O, \Omega, \Theta\}$ at position _. Justify your answer.

 (a) $n \log n^2 \in _ (n \log n)$;
 (b) $2^{\log n} + n \in _ 2^n$.

 Solution: (a) Using the property of logarithms $\log a^b = b \log a$, we get $n \log n^2 = 2n \log n$, so $n \log n^2 \in \Theta(n \log n)$.
 (b) Using the fact that $2^{\log a} = a$, we get $2^{\log n} + n = 2^{\log n} \cdot n^2 = n^2$, so $2^{\log n} + n \in \Omega(2^n)$ (since $n^2 \geq 2^n$ for all $n \geq 1$).

 Read carefully Chapter 3 of the book, with all the details pertaining to O, Θ, Ω, including Section 3.2. Be prepared to use formulas from this section, and from Appendix A of the book at any time.