
������������	
��
��������	
��
��������	
��
��������	
��
�����
������
������
������
�������������������������������������

����
�����
�����
�����
�������
������
������
������
���������
�����
�����
�����
����������������������������

�����
���
�� ���!"�

Kalyan Ram – Sebastian Elbaum
Version 1.5

�#$#%�&
'(('�#$#%�&
'(('�#$#%�&
'(('�#$#%�&
'(('

 1

Section 1 - Introduction
Software analysis helps to understand the vocabulary of the problem domain from the customer
perspective and set the system's goals. Software design is concerned with the generation of a
precise abstraction of what the “ desired” system should do and a high level strategy for
attacking the problem.

The Unified Modeling Language is a graphical notation for capturing requirements
and expressing the design of a software system, providing a means for developing blueprints of a
software system. UML assists software architects in getting the “big-picture” of a system by
providing a balance between natural language (which is too imprecise) and code (which is too
detailed). UML is also the industry-standard modeling language.

Section 2 - Use Cases
Use case modeling is an approach to capture user requirements. A use-case is a sequence of
interactions between the user and the system under consideration to achieve a goal. A user
initiates a use-case with a particular goal in mind, and completes the use-case when the service
satisfies that particular goal. The system is treated as a "black box" where the interactions with
the system are perceived from outside the system. A scenar io is an instance of a use-case,
representing a single variation of a use case (e.g., triggered by options, error conditions, security
breaches, etc.). For each use-case you need to write a detailed description including: use-case
name and goal, actor(s), preconditions, main flow of events, alternate flows and post conditions1.

Example 2.1:

Use case name ATM-W-01
Goal ATM Money Withdraw
Precondition User has inserted a card and has been authenticated
Flow of events 1. ATM asks the user to enter the amount to be withdrawn.

2. User enters the amount needed from the account.
3. ATM authorizes the amount entered by verifying the balance.
4. ATM delivers the amount through the machine slot.
5. ATM delivers the transaction receipt.
6. ATM ejects the card from the slot

Post condition System in baseline state to receive and initiate another transaction
Alternative
scenarios

Insufficient balance
 At Step3, a) ATM declares insufficient balance in the account.
 b) ATM suspends the transaction

1 Graphical representation of use-cases is possible but will not be covered in this document.

Ref:1

 2

Section 3 - Class Diagrams

A class diagram is a graphical-notation for depicting the system’s classes along with their
relationship to one another. A class diagram models the overall structure of classes that make up
the system architecture. The fundamental component of a class diagram is a “class”. A class is an
abstraction of entities with common character istics, and it has three basic components: a class
name, attributes and operations.

Example 3.1: Class Structure

Em ploy ee

Name : String
Salary : Double = 0.0

calculateSalary(Name : String, SSN : Long) : Double

Attr ibutes:

An attr ibute is a property of the object under consideration. For example, “John” and “24”
are the name and age attributes of the class Person.

Syntax for an attribute: visibility name: data-type = default value assigned

Visibility:

Visibility is expressed in terms of three modifiers namely: pr ivate, public and protected.
Private variables or operations are accessible from only within the same class. Public variables or
operations are accessible from anywhere. Protected variables or operations of a class are
accessible from the same classes within the package or from the sub-classes to the class under
consideration. Protected modifiers give restricted access as compared to the public modifier.

 Syntax for visibility is: + for public, # for protected and - for private.

Note: Syntax for visibility modifiers in example 3.1 follows Rational Rose.

Operations:

The functionality assigned to an object is realized with the help of operations. For example, a
circle object can have an operation like "calculate the area of the circle". A method is a way of
implementing a particular operation. An operation can be implemented by different methods in
different ways. For example, let us consider an operation like add two numbers. One method for
implementing this operation could be adding two integer numbers and another method could be
adding two real numbers.

 Syntax for operation is: visibility methodName (parameter-list): return-type

Public

Protected

Private
Class Name

Attributes

Operation

 3

Classes relate to each other through different forms of association. In general, an
association depicts the relationship between instances of classes. The association between
two classes consists of two association ends and each association end can be labeled
explicitly with a role name. We can refine the relationship between classes through the
use of multiplicity, navigability, generalization, aggregation, and constraint.

Example 3.2: Association

Professor Universityemployeremployee

Multiplicity:

Multiplicity indicates how many instances of a class may relate to a single instance of an
associated class. For example, a company has one or more employees, but an employee works for
only one company.

Example 3.3: Multiplicity

Company Person1..n1

employeeemployer

1..n1

Navigability:
Navigability consists of “directed” association. If the direction vector points from class A to class
B, then it means that class A has visibility or access to class B. If the navigability between two
classes is non-commutative, then it is called as unidirectional association. If the navigability
between two classes is commutative, then it is called as a bi-directional association.

Example 3.4: Navigability: OrderDetail class has access to the Item class because OrderDetail
has many Items but Item does not have access to what is there in the Order placed. Therefore,
the relationship between OrderDetail and Item is Unidirectional, but the relationship between
OrderDetail and ShoppingCart is bi-directional.

ItemShoppingCart OrderDetail

Generalization:
Generalization is a special form of association between a class and one or more refined versions
of it. Generalization is mapped to inher itance at the implementation level. Inheritance can be
defined as a mechanism by which a subclass will share attributes and operations from the super
class using the generalization relationship.

Aggregation:
Aggregation is a special form of association in which the aggregate object is made of component
objects. In other words, the aggregate object is the result of “and-ing” a series of components.

Ref:2

Role Name

Multiplicity

Association

Navigability

 4

Constraint:
A Constraint controls the values that a class can presume. It is enclosed in between curly braces
and is placed near the constrained entity.

Example 3.5: Aggregation, Generalization, and Constraint

Desktop Laptop Monitor CPU

speed : Double
Memory Hard Disk

Comput er

InputDevice

{speed > = 300<MHz}

Cre d i tCa rd

Nu m b e r
T yp e
E xp Da te

A u th o ri ze ()

Ca sh

A m tT e n d e re d

P ri n tRe ce ip t()

Ch e ck

B a n kNa m e
A ccNu m

A u th o ri ze ()

O rd e rIte m

Q u a n ti ty
Un i tP ri ce
T a xA m t

Ca l cS u b P ri ce ()
Ca l clS u b T a x()
Ca l cS u b Wt()

Cu sto me r

Na m e
A d d re ss
S S N

Cre d i tRa ti n g ()

P a ym e n t

A m o u n t

A u th o ri ze ()

O rd e r

Nu m b er
Da te Rec e i ve d
Ne tP ri ce

Ca l cT ot a l ()
Ca l cNet T ax ()
Ca l cT ot a lWt()

1

1..n

1

+ lineItem 1..n

1 .. n1 1 .. n1

Example 3.6: Integrated Illustration

A customer can place one or more orders from an online store. Each customer has a credit rating. If
the credit rating is good, the customer can make the payment either with a credit card or a bank
check. However, if the credit rating is poor, the customer has to pay in cash. Each order is an
aggregate of different order items. A customer’s order can have multiple items with varying quantities.
Draw a class diagram for the above online store transaction.

Aggregation

Generalization

Constraint

Ref: 3

Association Multiplicity

Navigability

Aggregation

Generalization

RoleName

{ if “ creditRating” is poor}

Constraint

 5

When to use class diagrams: Class diagrams can be used to get a complete overview of
the system or its parts through out the life cycle. The biggest temptation with the class
diagrams is to jot down every detail of the system too early. Instead, the focus should be
on key ideas and enlargement should be incremental.

Section 4 - Sequence Diagrams

Sequence diagrams model the dynamic aspects of a software system. The emphasis is on the
“ sequence” of messages rather than relationship between objects. A sequence diagram maps
the flow of logic or flow of control within a usage scenario into a visual diagram enabling the
software architect to both document and validate the logic during the analysis and design stages.

Example 4.1: Sequence diagram for the use case: Servicing the Elevator Button

Passenger ElevatorButton ElevatorContro l le r E levator Door

Press

Trigger

Move

Light On

Floor Reach

Stop

Open

Close

LightOff

[true]

 A L ifeline represents the duration during which an object is alive and interacting with
other objects in the system. It is represented by dashed lines. The long, thin boxes on the dashed
lines represent method activations and they indicate that a process is being performed by the
target object to fulfill a message. A Self-call occurs when an object sends a message to itself. In

Message

Return

Deletion

Self-Call

Object

Object is active
in this span

Guard

Ref:4

 6

the above example, the elevator object is sending a message to itself when the elevator reaches
the specified floor. Overall, the object is making a self-call to itself through its own operations.
The flow of messages between two objects can be controlled by placing a condition between
them. The flow of messages between objects is allowed only if the condition is true. A Return
represents a callback from a message indicating that the control has come back after the message
has been serviced. Too many returns in the diagram will make it cluttered. Deletion of an object
implies that the object no longer exists or is destroyed. An object can be destroyed either by a
message from another object or it could self-destroy. The notation for deletion is Χ.

When to use sequence diagrams:

Sequence diagram can be a helpful modeling tool when the dynamic behavior of objects needs
to be observed in a particular use case or when there is a need for visualizing the “big picture of
message flow” .

Section 5 - State Diagrams

A state diagram is a graph in which nodes correspond to states and directed arcs correspond
to transitions labeled with event names. A state diagram combines states and events in the form
of a network to model all possible object states during its life cycle, helping to visualize how an
object responds to different stimuli.

 A state can be defined as the duration of time during which an object is doing an activity.
An event occurs at a point in time and transmits information from one object to another. An
action occurs in response to an event and cannot be interrupted. An activity is an operation with
certain duration that can be interrupted by another event. For example, a bulb in the “On” state is
doing a continuous activity of “ illumination” and this operation can be interrupted by another
event like “switch off” . A guard is a logical condition placed before a transition that returns
either a true or a false. A guarded transition occurs only if the return value is true.

Example 5.1: Simple Digital Watch

A simple digital watch has a display and two buttons to set it, the A button and the B button. The
watch has two modes of operation, display time and set time. In the display time mode, hours and
minutes are displayed, separated by a flashing colon. The set time mode has two modes, set
hours and set minutes. The A button is used to select modes. Each time A is pressed, the mode
advances in sequence: display, set hours, set minutes, display etc. Within the sub modes, the B
button is used to advance the hours or minutes once each time it is pressed. Buttons must be
released before they can generate another event. Prepare a state diagram of the watch.

Show Time

do/ show Hrs and Mins

Set Hours

do/ show Hours

Button Press[if A] / Switch mode

Set Minutes

do/ Show minutes

Button Press[if A] / Switch mode

Button Press[if A] / Switch mode

Button Press[if B] / increment hours Button Press[if B] / increment mins

Start

Transition

Guard Event

Action

State

Ref:5

Activity

 7

Super-state:

Super-states can simplify complex diagrams. For example, Figure 5.2 shows that the "Rejected"
state could arise from either of the Authorizing states. All the three authorizing states can be
grouped into a single super state called the active state to streamline the representation.

Example 5.2: Without Super state

Authorizing
Card

Aut horizing
Pin

Authorizing
Money

Transaction
Successful

Rejected

All the authorizing states grouped as “active” Super state

Reject

Authorizing
Card

Authorizing
Pin

Authorizing
Money

Active

Authorizing
Card

Authorizing
Pin

Authorizing
Money

Transaction
successful

Active

Concurrent State Diagram:

An object could be in more than one simultaneously occurring states when performing an
activity. Concurrent state diagrams are useful in modeling objects that have independent
behaviors doing the same activity.

Example 5.3: ATM in concurrent states

Emitting

Cash

do/ dispense cash

Card

do/ Eject Card

Cash

do/ dispense cash

Card

do/ Eject Card

Setting Up Ready to
Reset

 Ref: 5

Dashed lines partition concurrent activities in a single composite
activity

 8

For example, consider an ATM machine in the emitting state doing two concurrent activities:
dispensing cash to the user and ejecting card. The control is split in a composite activity and later
merged.

Section 6 - Activity Diagrams

An activity diagram is a type of flow chart with additional support for parallel behavior. Activity
diagrams include the following new concepts.

Branches and Merges model the conditional behavior of activity diagrams. A branch has a
single incoming transition and multiple, conditional, outgoing transitions. The control flow is
directed to one of the outgoing transitions depending on the condition satisfied. A merge is a node
in the activity diagram at which the conditional behavior terminates. Each branch in an activity
diagram has a corresponding merge.

Forks and Joins model the parallel behavior of the system. A fork in the activity diagram has a
single incoming transition and multiple outgoing transitions exhibiting parallel behavior . The
incoming transition triggers the parallel outgoing transitions. A join in the activity diagram
synchronizes the parallel behavior started at a fork. Join ascertains that all the parallel sets of
activities (irrespective of the order) are completed before the next activity starts. It is a
synchronization point in the diagram. Each fork in an activity diagram has a corresponding
join where the parallel behavior terminates.

Conditional Thread. A condition is placed on the thread originating from the fork to create an
exception for the join rule. As per the join rule, the conditional thread is assumed to have
completed execution if the condition turns out to be “ false”.

Synch State synchronizes different existing activities so that they make a transition to the next
activity at the same time.

When to use activity diagrams:

Activity diagrams are most useful when modeling the parallel behavior of a multithreaded system
or when documenting the logic of a business process.

When to use state diagrams:

State diagrams are primarily necessary for those objects whose behavior across many use cases
needs to be understood.

 9

Example 6.1 Process – Withdrawing money from the ATM

Insert Card

Ent er P in

A uthorize

Enter A mount

Chec k A/ C
Balance

Tak e M oney
From Slot

Take Receipt Debit Account

S how Balance

E ject Card

[V alid P in]

[Invalid P in]

[Insuffic ient Balance]

[B alance >= Amt]

if receipt requested

Start

Activity

Branch

Fork

Join

Merge

End

 10

Section 7 - Package Diagrams

Package diagrams group related classes to help the software engineer to identify and to
understand dependencies. In addition, a system’s overall structure can be controlled with the
help of a package diagram.

 Two classes are said to be dependent on each other if changes made to one class causes
changes to another class. A dependency is said to exist between two packages if any two classes
in the packages are dependent. In example 7.1, package “Online Banking UI” is said to depend on
“GUI Library” package because changes made to GUI library classes affect application’s user
interface.

Example 7.1: Package diagram for “Online Banking System”

In a given bank system, customers can access their account details by using the online facility
provided by the bank. The user inputs the required authentication information which is verified
before giving access to the account information. The user can then check the account balance,
pay bills online, and transfer money from the savings account to checking account. The following
package diagram documents an abstract design of the software by grouping related classes into
packages. For example, the graphical user interface-classes, which provide user input and output
capabilities, are grouped into GUI Library, while the security related classes are grouped into a
Verification Engine package. Note: The diagram just shows the interdependencies originating at the
Online Banking UI.

Online Banking
UI

Bank Database

Bank Account

Verification
Engine

Networking LibGUI Lib

When to use package diagrams:
Package diagrams are most useful during the high-level design stages in large software projects to
describe system’s overall structure.

References:
 [1] Rational: “UML Resource Center” , www.rational.com , 2002

[2] SmartDraw: “ Draw Anything Easily” , www.smartdraw.com, 2002
[3] TogetherSoft: ”A Hands On Introduction For Developers” , www.togethersoft.com, 2002
[4] Geocities: “UML Examples”, www.geocities.com, 2001

 [5] James Rumbaugh, Michael Blaha, William Premerlani,Frederick Eddy, William Lorensen:
 “Object-Oriented Modeling And Design”, Prentice Hall, New York, 1998

Ref:3

Package

Dependency

