UNIVERSITY OF NEBRASKA-LINCOLN

/= J.D. EDWARDS HONORS PROGRAM
J.D. E_dwa__r_'_.ds_'Hshm‘s Program'in
Computer Science ar_;d _Management-

Coding Standards for C, C++, and Java

Version 3.0
September 3, 2003

LINTRODUCTION. ..ottt e 2

LLOVERVIEW ...ttt ettt e ettt e st e e st e e s abe e s sabe e s sabe e s sabeeesabesssaaeessnrnneas 2
1.2 REFERENCES AND APPLICABLE DOCUMENTS ...t 2
2FILE ORGANIZATION ...ttt st s s st e s st e e sbe e s sabe e s sabeessabeeesnreesenes 2
2L FILE CONTENTS.....ctiii ittt ettt et e ettt e et e et e e esa e e e eaae e s ebaessbeessbeessabeeesabesssnbesssnreneas 2
2.2 SOURCE FILE LAY OUT ...ttt tee sttt sebaessaaessbenssabenssabanssnrenea 3
2.3HEADER FILE LAYOUT (C, CH+ ONLY) oot 3

S NAMING CONVENTIONS. ...ttt st s e s be e s s e e s sabe e e sabe e s sareeseaes 4
3.1 GENERAL CONVENTIONS ...ttt ettt sttt s sba s s s snbe e snr e e s anreas 4
S.2VALID CHARAGCTERS ...ttt ettt e s te s e e s s eaee s sbe e e sabe e s sabeessareeeas 4
RTINS 5
34 FUNCTION/METHOD NAMES. ...ttt ettt e s saee s sree e 5
3.5 NAMESPACES/PACKAGES...... oottt et 5
ASTYLE GUIDELINES ... oottt ettt ettt e st s st e e st e e sbe e s sabeessabeeesnreeseaes 6
T 1 N1 6
A2 COMMENTS ..ottt e e e et e e et e e s e be e s s ebeeesbeessabeessabeessabesesabeessabesssateas 6
4.2.1 BeginNiNg COMIMENTS.......cceciiiieiieeiesteesie e st e e seesreesaeseesseesaesseesseesseeseesseeseeneesseenseans 7

4. 2.2 PrOIOQUE ...ttt sttt b bt h et e e b et se bt bt bt e he e e e b e s e be s bt bt nn e e e e 7
R YO0 o (X @0 1111 21= 1 £ 9
4.2.4 Classes, Methods/Functions, Interfaces, Class AttribULES............ocovcveeeeiecieee e 9

L @ Y N I I N 9
4.3.1 SPaCing AroUNd OPEIELOIS.c.ceeeeeterierteriesieeieee et see et e s sn e b b ese e ene s 10
4.3.2 Indentation AN BraCeS........cuuiiiiieiiiie ittt ettt stee e tee et e s este e sebae s sbee s sbeeesbeessnreeenn 10
R I = = G N1 1 11

A4 STATEMENTS ...ttt ettt e et e e e e s ebt e e s bt e s sbeeesabeeesabeessabeeesabeeesnbeeenes 12
N 0 g (0] IS = = 11 1K 12
4.4.2 Conditional StateMENES TN C/CHuviiiiiieciiee e saee e 12
4.4.3 Include Statements and Package IMPOIS.........coveveierireiesereeeeeeee e 13

A5 DECLARATIONS. ...ttt ettt et e et e st e s ebt e e s bt e s s be e e sbeessabeeesabesesabeessnseesnes 13
4.5.1 Variable and Attribute DECIaratioNS...........c.ooccueeeeieiieie et e et e e e s e e ssvaeee e 13
4.5.2 External Variable Declaration iN C/CHt........ooiiiiiiie et 14
4.5.3 Enumerated Type Declaration in C/CH+.... ..o 14
4.5.4 ClassS DEClaratioNS N C.....ueiiiiie ettt etee ettt e s eba s s ebae e s e s sbe e s sbeessnreeeas 14
4.5.6 FUNCLION DECaration iN C/CH ...t e e e e s searaee e 14
5JAVA DOCUMENTATION COMMENTSttt envee e 15
5.1 DESCRIPTION ...ttt e s et e s st e s st e e s e ba e e s eatessbeessabeessabesssabesssabesssnreas 15
P2 17 AN 1 TSR 15

B EXAMPLES ... oottt et e et e e s et e e s bt e e sb e e e sbe e e sbe e e sabeeesbeeesbeeeanreeeas 16
LI T Y A O 16
L2 O O 19

Coding Standards Page 1 1/16/2004

1 Introduction

The purpose of these coding standards is to facilitate the maintenance, portability, and reuse of
custom C, C++, and Java source code developed by students in the JD Edwards Honor Program,
University of Nebraska-Lincoln.

You must receive explicit permission whenever the standards are not followed, and add a
comment with thereason for non-conformance.

Language specific information will be denoted by parentheses containing the name of the
language. Within tables, "n/a" denotes "not applicable.”

1.1 Overview

Section 2 describes file organization, including file content, source file layout, header file layout,
and header file guard. Section 3 describes the naming conventions for files, attributes, variables,
methods, namespaces, etc. Section 4 describes style guidelines for the source files and header
files. Every assignment should observe the standards described from section 2 to 4.

1.2 References and Applicable Documents

GNU standard: http://www.gnu.or g/prep/standards toc.html

IBM Standard: http://oss.software.ibm.com/icu/userguide/conventions.html

NASA Standard: http://ccs.hst.nasa.gov/ccspages/policies/standards/coding standards.html
Javasoft Standard: http://Java.sun.com/products/jdk/Javadoc

Possibility Standard: http://www.possibility.com/Cpp/CppCodingStandard.html

2 File Organization

This chapter explains what belongs in the source and header files (section 2.1), and how the
source and header files should be organized (sections 2.2 and 2.3).

2.1 File Contents

Files should be used to organize related code modules, either at the class (for C++ and Java) or
function (for C/C++) level. Always use one file (or header/source file pair) per class or set of
logical functions. Of course, nested classes are allowed in Java. Table 2.1 gives the details
about what goes in each type of file.

C C++ Java
Class declaration n/a header file (.h) n/a
Class implementation n/a source file (.cpp) sourcefile (.java)
Struct declaration header file (.h) header file (.h) n/a
Struct implementation sourcefile (.c) source file (.cpp) n/a
Function prototypes header file (.h) header file (.h) n/a

Coding Standards

Page 2

1/16/2004

Function definitions

sourcefile (.c)

source file (.cpp) n/a

Table 2.1 File Contents

2.2 Source File Layout

Source files should contain the following components in the order shown in Table 2.2 (if they
are used). Some are sections in themselves (like classes) and may have separate ordering within
that scope. Some components may show up in acode block for purposes of scope.

File contents C C++ Java
Beginning Comments X X X
Package imports n/a n/a X
Class Document Comments/Prologue X X X
C, C++ Prologue X X n/a
System #includes * X X n/a
Application #includes * X X n/a
External functions X X n/a
Externa variables X X n/a
Constants X X X
Static variable initializations X X X
Class declaration n/a n/a X
Public methods n/a X X
Protected methods n/a X X
Package methods n/a n/a X
Private methods n/a X X
Functions X X n/a

+ (Java) aso called Java Prologue

*(C, C++) Whenit's possible to put a needed #include line in the source file instead of in the header file, do so. This
will reduce unnecessary file dependencies and save alittle compile time.

Table 2.2. Source File Layout

2.3 Header File Layout (C, C++ only)

Header files should contain the following components in the order shown in the Table 2.3 (note
that Java does not use header files). Some are sections in themselves (like classes) and may have

separate ordering within that scope.

All header files should contain a file guard mechanism to prevent multiple inclusion. Below is

an example:

#i f ndef Meani ngf ul NarmeH /1
#defi ne Meani ngf ul NaneH /1
' /1
#endif // Meaningful NameH //

Coding Standards

first line of the header file
second |line of the header file

body of the header file

|l ast line of the header file

Page 3 1/16/2004

[File contents C++
|File guard

[Prolog

System #includes
Application #includes
#defines

[Macros

external functions
external variables
Constants

Structs

Class declaration n/a
|Public methods n/a
|Protected methods n/a
[Private methods n/a
Inline method definitions * n/a

[Function declarations X
*(C++) Small inline methods may be implemented in the class definition.

XXX XXX XXX X0

XXX XX XXX X XXX XXX X

Table 2.3 Header File Layout

3 Naming Conventions

We use a naming convention to make sure that all names in a project are defined and used in a
consistent way, resulting in more readability and understandability. The most important principle
for naming everything (files, classes, variables, etc.) is “short but descriptive’. In other words,
avoid names that are extremely long, but provide enough detail so it is clear what the name
represents. Abbreviations and contractions are discouraged.

For example:
public int setNunmberReceiver(int alnt); // Recomrended
public int setNumberRcv(int alnt); /1 Not reconmended--uses abbreviations

public int theNunmber O St udent sl nTheJDEdwar dsHonor sProgr anCl ass;
/1 Way too long to be useful

3.1 General Conventions
The general naming conventions you should follow are summarized on Table 3.1.

3.2 Valid Characters

Coding Standards Page 4 1/16/2004

All names should begin with a letter. Individual words in compound names should be
differentiated by capitalizing the first letter of each word. The use of specia characters (anything
other than letters, digits and underscores) is discouraged.

| dentifier C [C++ ava
package n/ a Shor t Nane *
class, union, struct |[EachWor dCapi tal i zed

interface n/ a EachWor dCapi t al i zed
typedef EachWor dCapi t al i zed n/ a

enum EachWr dCapi tali zed n/ a

pointers nanePt r n/ a
ffunction, method i nt er nal Wor dsCapi tal i zed

class attribute n/ a i nt ernal WrdsCapitalized

convert method n/ a t 0X

accessor method |n/ a get X, setX

object, variable i nt er nal Wr dsCapitalized

#define, macro ALL_CAPS_AND UNDERSCORES n/ a

const, static final JALL_CAPS_AND_UNDERSCORES

source file .C . Ccpp .Java
header file . h n/ a

* |f you must combine several words for package name, use format EachWor dCapi t al i zed.
Table 3.1 Naming Conventions

3.3 File Names
File names must conform to the following guidelines.

» Names should be descriptive and relate directly to the purpose of the file.
* Do not use spaces between words.

» Do not use more than one period per filename (e.g. my.file.cpp is bad).

» Capitalizethefirst letter of each word.

* No more than four words in one name.

» Underscores can be used (e.g. Document_Style.doc).

3.4 Function/Method Names

Function names should be an action verb. Functions with Boolean return types should be named
with the"is" prefix, asin "isEmpty()" or "isRed()."

3.5 Namespaces/Packages
(C++) There are no requirements for namespacesin C or C++.

Coding Standards Page 5 1/16/2004

(Java) Java packages group classes of related functionality. Package source and class files then
reside in a convenient hierarchical directory structure that maps directly to the package name.
For example, package edu.unl.jdehp.schmoejoe corresponds to the directory
“...\edu\unl\jdehp\schmoe\joe\".

4 Style Guidelines

The primary purpose of style guidelines is to facilitate long-term maintenance. During
maintenance, programmers who are usually not the original authors are responsible for
understanding source code from a variety of applications. A common presentation format
reduces confusion and speeds comprehension of the code.

4.1 Lines

At most one statement is allowed per line. Keep the code as understandabl e as possible.

All lines should be displayable without wrapping on an 80-character display. When an
expression will not fit on asingle line, break it according to these general principles:

» Bresk after acomma

* Break before an operator.

» Prefer higher-level breaksto lower-level breaks (see example).

» Alignthe new line with the start of the expression at the same level on previous line.
Here are some examples.

sonmeMet hod(firstlnteger, secondlnteger, thirdlnteger,
Fourt hl nt eger); /1 Break at comma, and align

someMet hod1(firstlnteger,
SomeMet hod(secondl nteger, thirdlnteger));
/I Break at higher-1level.

firstlnteger = secondlnteger * (thirdlnteger + fourthlnteger)
+ fifthlnteger ; /] Break before operator.

4.2 Comments

There are three types of comment delimiters used in C, C++, and/or Java. Table 4.1 shows each,
including which can be used in each language.

(C++, Java) Single line comments should use the single line comment delimiter // whenever
possible.

When commenting file prologues, classes, methods, and interfaces, you should follow the
Javadoc format, described in chapter 5.

Coding Standards Page 6 1/16/2004

Type Beginswith Endswith C C++ Java
Singleline Il End of line X X
Multipleline I* */ X X X
Javadoc” [** x| X* X* X

#Javadoc is more fully discussed in chapter 5.

The Javadoc tool does not work with C/C++ code, but since the beginning delimiter has prefix /, thistype is still
valid in these languages.

Table 4.1 Commenting types

The subsequent sections describe in detail the commenting you must include in your code.
Sections 4.2.1 and 4.2.2 describe the comments that every file must begin with, and sections
4.2.3 and 4.2.4 describe the comments used for classes, methods, etc.

4.2.1 Beginning Comments

All source files should begin with a comment that lists the filename, course number, author(s),
version, and date. If the code is maintained by a different person/group from the original
author(s), consider it a new version and state maintainers name(s). You should not use the
Javadoc format for the beginning comments. Some of the information will be duplicated in the
prologue, but do not worry about it. If you are using a software configuration management tool,
you do not need to include this. For example:

~
*

* Sonmed ass. j ava

*

* Witten by : John Doe, Jane Snmith
* Witten for: JDE155

* Date : July 30, 2002

* \Ver si on 1.0

*

* Modified by: Pete Jones, Mary Nel son
* Witten for: JDE155

* Date : August 15, 2002

* \Ver si on 2.0

*

4.2.2 Prologue

The second type of comment every file should have is the prologue. The purpose of prologueis
to provide both users and maintainers of the code with a better understanding of what the code
does. In some cases, developers can write a small tool to extract information from the prologues,
S0 observance to the prologue standard is very important. Prologues should aways be written
with Javadoc—type comments, and should only contain the following information:

o Description. A "big-picture” description (or responsibility) of code, including collaborations
with other files.

* Author.

Coding Standards Page 7 1/16/2004

* Version. The current version number of the code.
» See A list of related class(es), each on a separate line.
Hereisan example:

/**

*

An class for doing sonething. A description should be given that

* will give the user enough information to understand the basics.
* It will be initialized by some U cl ass.

*

* Version 1.2: Fix bug #3

* Version 1.3: Fix bug #5

*

* @Aut hor Joe Schmoe j schmoe@se. unl . edu
* @ersion 1.3, 08/12/00

* (@bee Sonet hi ngd ass

* @bee Anot her Cl ass

*

/

If you are using a software configuration management tool, you only need to include the
description, since the tool will take care of the rest for you. The following subsections provide
more specific instructions about each component of the prologue.

4.2.2.1 Description

The description must include:

» intent: why the code was devel oped and how it fits into the process, subsystem; and
» the modification history.

Optionally, you may include

* dependencies, and

» explanation of collaboration with other classes.

Don't include details that are better left as method or function descriptions, or as block comments
within the code itself. The description should be as short or as long as is necessary, although one
to three paragraphs should cover the mgjority of files.

For header files and include files, the description should focus on how the class or functions
should be used. For source files, the description should focus on how the class or functions are
implemented - algorithms, design patterns, etc. For Java files, the description should be a
balance of both.
4.2.2.3 Author

List the authors in chronological order, original author first. Y ou may use multiple author tags
for multiple authors.

4.2.2.2 Version

The idea situation is that the configuration management system automatically updates the
version and date in the prologue. Otherwise pay attention to the synchronization between the

Coding Standards Page 8 1/16/2004

version number in prologue and actual version number in configuration management system. If
you are not using a configuration management system, use version numbers as specified by the
instructor. If there are multiple versions, list only the current version using the Javadoc tag. You
may list the other versions in the description.

4.2.2.3 See
List related books, links, classes, files, etc.

4.2.3 Code Comments

There is a blurry line between cluttering up your code, and putting meaningful commentsin. Try
to comment in such a way that keeps the code as clean as possible. Not adding comments is
definitely not a good answer. This makes it much harder to figure out what you intended. When
in doubt, comment the code.

In general, brief comments regarding individual statements may appear at the end of the same
line, and should be vertically aligned with other comments in the vicinity for readability.

4.2 .4 Classes, Methods/Functions, Interfaces, Class Attributes

Use the Javadoc format to comment classes, methods/functions, interfaces, and class attributes in
C, C++, and Java

Block comments should be put in the header files in C/C++ and (obviously) the Java source file.
A block comment should be used to describe each method/function, and must be placed before
the definition (or implementation) of the method/function. The block comment should include
the first three of the below fields, and may contain the last two, particularly if they were written
and/or modified by someone other than the original author.

» description: abrief description about the method or function.
» param: the passing parameters and their brief description

* returnvaue

* author

e version

Hereis asimple example:

/**

* Compute the sumof two integers

*

* @aram paraml, The first nunber

* @aram paran®, The second nunber

* @eturn the sum of paraml and paran?
* @uthor Some guy

*/

4.3 Formatting

Coding Standards Page 9 1/16/2004

This sections details the requirements for spacing around operators (section 4.3.1), indentation
and braces (section 4.3.2), and blank lines (section 4.3.3).

4.3.1 Spacing Around Operators

One space should be used around all operators with the following exceptions: the : : and - >

operatorsin C++; and the. , ++, -- and! operatorsin C++ and Java. For example,
if (value == 0) /'l correct

{ doSonet hi ng() ;

i}f (value==0) /!l wong, no spaces around ==

{ doSonet hi ng() ;

if (value == 0) /1 wrong, spaces around parentheses

doSorret hi ng() ;
}

4.3.2 Indentation and Braces

The contents of all code blocks should be indented to improve readability. Four spaces are
recommended as the standard indentation. Place the beginning brace on the line below the
method, loop, etc., and line the ending brace vertically with the method, loop, class, etc. to which
it belongs. For nested if-then-else statements, place the else below the ending brace on the
previousif. Use similar format for try-catch-finally blocks. Here is an example.

int main()
{
doSonet hi ng() ;
switch (value)
{
case 1:
while (value == 0)
{

}

br eak;
case 2:
case 3:
doSorret hi ng() ;
br eak;
defaul t:
br eak;

doSorret hi ng() ;

if (value == 0)

doSonet hi ng() ;

Coding Standards Page 10 1/16/2004

doSorret hi ng3() ;

try
{
st at enent ;

catch (ExceptionC ass e)

{

st at enent ;
}
finally
{

st at enent ;
}

The following three examples show the most common alternatives to the style we have chosen.
Although there is nothing wrong with them, use the one described above for consistency.

if (value == 1) {
doSonet hi ng() ;
}

if (value == 1)

{
doSonet hi ng() ;
}

if (value == 1) {
doSonet hi ng() ;
}

4.3.3 Blank Lines

If it makes the code more readable, use a single blank line to separate logical groups of code.
Two blank lines to separate each function or method definition may aso make it easy to tell
where each new function begins. Y ou may a so use dashed lines between functions and methods.
For example:

e I
/**
* Javadoc style conments
*/
voi d doNot hi ng()
{
}
e
/**
* Javadoc style comments
*/
void returnOne()
{
return 1;
}

Coding Standards Page 11 1/16/2004

4.4 Statements

This section describes some standards you must follow related to control structures (section
4.4.1), conditional statements (section 4.4.2), and include and package import statements (section
4.4.3).

4.4.1 Control Statements

In general, al control statements must be followed by an indented code block enclosed within
braces, even if they only contain one statement. This allows the block to be easily expanded in
the future. For example:

if (value == 0)
{ /1 Correct
doSorret hi ng() ;
}
if (value == 0) doSonet hing(); /1 not recommended — no bl ock, not indented
if (value == 0)

doSorret hi ng() ; /1 not recomrended - no bl ock

4.4.2 Conditional Statements in C/C++

In C and C++, conditional statements do not have to explicitly evaluate to TRUE or FALSE.
Any expression that evaluates to zero is considered FALSE, and everything else is TRUE. For
clarity, it is recommended that you write your conditional statements so they always evaluate to a
Boolean value. Also, do not abuse notation by, for instance, comparing non-pointer values to
null. Here are afew examples:

bool bool Val ue = get Val ue();

if (!bool Val ue) /1l Correct
{
doSoret hi ngEl se();
}
i nt intValue = getVal ue();
if (intvalue == 0) /1l Correct
{
doSonet hi ng() ;
}
if (intvalue == null) /1 Not recomrended — null used for pointers
doSonet hi ngEl se();
}
if (lintVvalue) /1 Not recomrended - not explicit test
{

doSonet hi ngEl se();

Coding Standards Page 12 1/16/2004

}
4.4.3 Include Statements and Package Imports

Includes and package imports should be grouped together at the top of each file, after the prolog.
They should be logically grouped together, according to system includes, application includes,
related packages, etc., with the groups separated by a blank line. Absolute path hames should
never be explicitly used in #i ncl ude or i nport statements, since this is inherently non-
portable.

For C/C++, system includes should use the <f i | e. h> notation, and all other includes should
usethe"fil e. h" notation. For example:

(CIC++)

#include <ltstdlib. h> /1l Correct
#i ncl ude <l tstdio. h> /1

#i ncl ude <It Xnf Xm h> /1

#i ncl ude "meani ngf ul name. h" /1

#include "/proj/util/Maningful Nane.h" // wong — absolute path given

#include <lItstdlib. h> /1 wong — out of order

#i ncl ude </usr/include/stdio. h> /1 wong — path given for systemfile
(Java)

i mport java.aw.*; /1 Correct

i mport java.awt.event.*;
i mport java.awt.event. KeyEvent.*;

i nport javax.swi ng. *;
i nport aLibrary.*;
4.5 Declarations

In this section the standards relating to declarations are described. Section 4.5.1 discusses
variables and attributes in C, C++, and Java. Sections 4.5.2-4.5.6 describe rules that relate to C
and/or C++, but not Java.

4 5.1 Variable and Attribute Declarations

Readability and understandability are the goals. Each variable/attribute should be individually
declared on a separate line. Variables/attributes can be grouped by permission (public, private,
protected and package) or by type (int, float, Applet, etc.), with groups separated by a blank line.
Use whichever makes the code clear. The names should be aligned vertically for readability.
There is no required ordering of types. A brief comment describing what the variable/attribute is
for should be included. Here is one Example:

i nt area; /1 The area of the object, in square inches
i nt wi dt h; /1 The width of the object, in inches

i nt hei ght ; /1 The height of the object, in inches
double pi; /1 An approxi mati on of the constant ‘pi’

Coding Standards Page 13 1/16/2004

double e; /1 An approximtion of the constant ‘e’
4.5.2 External Variable Declaration in C/C++

All external variables should be placed in header files. The actual allocation should take place in
the implementation file (.c / .cpp). In general, the use of global variablesis discouraged (consider
creating a singleton class).

4.5.3 Enumerated Type Declaration in C/C++

The enumtype name and enumerated constants should each reside on a separate line. Constants
and comments should be aligned vertically. In general, the enumshould be within a class. If the
user of your class needs direct access to it, then put it in the public section and the user will then
simply have to scope it with your class name. This will help reduce the pollution of the global
namespace.

Consider using explicit values if these values might be saved to permanent store. If they are not
explicit, then they will change if someone inserts a new value. Then, when the values are
restored, they may not match the newer enum. In these cases, explicit assignment may help keep
the sanity of data on permanent store. Here is an example.

enum ConpassPoints { // Enunms used to specify direction.

North = O, /1l explicit values not necessary, but recomrended.
South = 1,
East = 2,
West = 3

4.5.4 Class Declarations in C++

All class definitions must include a constructor (either default, or at |east one parameterized one),
(virtual) destructor, copy constructor, and assign (=) operator. If any of these four are not
currently needed, create stub versions and place them in the private section so they will not be
automatically generated, then accidentally used. (This protects from core dumps and other
errors.) It is advisable to put the public section first since the class should represent a concept and
the public section holds the services of that concept. The user should not have to know the
implementation details. It is suggested that fri end declarations appear before the public
section. All member variables should be either protected or private. It is recommended that
definitions of inline functions follow the class declaration (in the .h file), although trivia inline
functions(e.g.,{} or{ return x; }) may bedefinedwithin the declaration itself.

4 5.6 Function Declaration in C/C++

All functions must be prototyped, with the prototypes residing in header files. If thisis not done
(especidly in C) the parameters may not get checked at compile time, opening the door wide for
run-time errors. In general, each class (or struct) will have its own header file (.h) and
implementation file (.cpp).

All parameters should either have a meaningful name (even in the prototype) or the use of the
parameter must be very clear by the type name. For example, "int" does NOT make the use clear,
so you must have something like "int count” that makes the use much more clear.

Coding Standards Page 14 1/16/2004

5 Java Documentation Comments

Java programs can have two kinds of comments. implementation comments and documentation
comments. Implementation comments are those delimited by /*...*/, and //. Documentation
comments (also known as “doc comments’) are Java-only, and delimited by /**...*/. Javadoc
comments can be extracted to HTML files using the Javadoc tool, creating a very nice overview,
tree structure and description of all the Javafiles. In fact, you can use HTML in your comments.

As mentioned previously, Javadoc comments are legal in C/C++. In fact, there are severa
applications available to process them in much the same way as Javadoc does for Java.

Javadoc comments describe Java classes, interfaces, constructors, methods, and fields. Each
Javadoc comment is set inside the comment delimiters /**...*/, with one comment per class,
interface, or member. The general format of Javadoc comments are list as below:

(line 1) [**
(line 2) *

(line 3) * Begi nning of description
kiine X) * end of description

(l'ine x+1) *

(line x+2) * @ag tagValue

(line x+3) * @ag tagValue

kiine x+y) * @ag tagVal ue
(l'ine x+y+1)*/

5.1 Description

Provide a detailed description of the class, interface, method, or field. Thisfield may include the
following items,

* intent

» preconditions and/or postconditions

* dependencies

 collaboration with other class, or method
* modification history

Y ou should always give a brief description of the class, interface, method, or field. Unless there
are no explicit preconditions to a method, always specify the preconditions. Likewise,
postconditions should be included unless they are absolutely obvious. The other items should be
used when appropriate, and you can add other items to increase the understandability of the
source code.

5.2 Tags

Below are al of the Javadoc tags, listed in the order they should appear.
aut hor (classes and interfaces only, required)
version (classes and interfaces only, required)

Coding Standards Page 15 1/16/2004

par am (met hods and constructors only)

return (et hods only)

exception (@hrows is a synonym added in Javadoc 1.2)
see

since

seri al (or @erialField or @eri al Dat a)

deprecat ed (see How and When To Deprecate APIS)

Please reference Javadoc homepage http://java.sun.com/|2se/Javadoc/index.html for more
detailed descriptions.

See Chapter 6 for an extensive example of Javadoc comments

6 Examples

The next two sections give a complete example of code that follows the standard given in this
document. For Java, asingle classis given as an example. For C++, there are two examples.
Thefirst is a header/source file for a class, and the second a header/source file for a group of
related functions.

6.1 Java

The following is an example Java class called BinaryTree.

/1l Witten By : Chuck Cusack
/!l Witten For : The fun of it

/1 Date : June 12, 2001

/1 Version 1.0

I

/1 Modified on : July 12, 2002

/1 Version 1.3

R e R E R R R

i mport bl ah. f oo. Tr eeNode;
i mport bl ah. f 0o. Connecti ves;

* BinaryTree is a class that inplements the binary tree <i >ADT</i >.

The Binary tree is constructed using objects of type TreeNode.

Si nce TreeNodes have char key val ues, the BinaryTree stores nodes which
have char key val ues.

Mbst of the standard binary tree operations are inpl enented.

<p>

Keep in mind that this is only serving as an exanpl e of the coding standard,
and is not nmeant to be an actual useful class. You will notice that some
met hods are not present, and sone attributes are not used. Do not worry
about this. Use this as a guide for the standard, not of proper object
oriented design, etc.

@ut hor Chuck Cusack
@ersion 1.3

@ee bl ah. f oo. TreeNode
@ee bl ah. f oo. Connecti ves

R T .

*

*/
public class BinaryTree

/1 The O ass Attribute(s)
/1

Coding Standards Page 16 1/16/2004

/)\')\'

* Areference to the root of the binary tree.
*/

private TreeNode root;

/)\')\'

* \Wether or not the tree is a binary search tree.
*/

private bool ean i sBi narySear chTr ee;

/**
* The nunber of nodes currently in the tree.
*
/
public int nunmber O Nodes;

| **

* The default constructor. It sinply creates an enpty tree.

*

*/
public BinaryTree()
{

root =nul | ; /1 Since the tree is enpty, the root should point to null.

* A single-node constructor, which creates a new binary tree with one node.

*

* @aram rootNode The node which will becorme the new root.
*
*/
public BinaryTree(TreeNode root Node)
{
r oot =r oot Node; /Il Cearly the only thing that needs to be done.
}
e e e T
/**

* A three-node constructor, which creates a new binary tree with the first
* argunment as the root, the second argument as the root's left child, and

* the third argunment as the root's right child. If the | eftNode or

* right Node have children, they will be preserved. |[|f rootNode has any
* children, they will be |ost.

* @aram rootNode The node which will become the new root.

* @aram |eftNode The node which will become the root's left child.

* @aram rightNode The node which will beconme the root's right child.
*

*/

public BinaryTree(TreeNode root Node, TreeNode |eftNode, TreeNode ri ght Node)
{

root = root Node;

root. setLeft (| eftNode);

root. set Ri ght (ri ght Node) ;

* @eturn Areference to the root of the tree.
*/

public TreeNode get Root ()

{

return root;

* Replaces the root with the given node. This orphans the old tree, and
* maintains any children newRoot m ght have.

Coding Standards Page 17 1/16/2004

*

* @aram newRoot The node that will become the new root of the tree.

*/
public void setRoot (TreeNode newRoot)
{
root = newRoot;
}
e e
/**

Perforns an in-order traversal of the binary tree.

<p>

Precondition: startingNode is a node in the BinaryTree, traversal String
references a valid StringBuffer.

<p>

Post condition: traversal String has been appended with the in-order
traversal of the tree rooted at startingNode, including parentheses
i f addParent heses was set to true.

<p>

@aram starti ngNode The node to start the traversal at.

@aramtraversal String Stores the string that is created as the tree is
par sed.

@ar am AddPar ent heses Whet her or not to include parentheses in the
appropriate places during a traversal.

T T T R R

/

private void | nOrderTraversal (TreeNode starti ngNode,
StringBuffer traversal String,
bool ean AddPar ent heses)

if(startingNode != null)
{

/1 Check for the base case

/1 Add a begi nning parenthese if appropriate

i f (AddPar ent heses == true && !startingNode.islLeaf())
{

}

/1 Process the |left subtree
I nOrder Traver sal (startingNode. getLeft(), traversal String,
AddPar ent heses) ;

traversal String. append(' (');

/1 Add the current node's key to the string
traversal String. append(startingNode. get Key());

/'l Process the right subtree
I nOrder Traver sal (startingNode. get Ri ght (), traversal String,
AddPar ent heses) ;

/1 Add an ending parenthese if appropriate
i f (AddPar ent heses == true && !startingNode.isLeaf())

{
traversal String. append(')"');
}
}
}
e e
/**

* Splice the first node into the tree as the parent of
the second node, neking it the right child, and setting
the left child to null.

*
*
*
* @aram current Node the node in the tree.
* @ar am newNode the node add.

*

*

/
public void splicelnR ght(TreeNode current Node, TreeNode newNode)
{

Coding Standards Page 18

1/16/2004

/1 Special case: The root is being repl aced

i f(currentNode == root)
{
r oot =newNode;
}
el se
{
/1 Normal case: An internal node is being spliced in
TreeNode parent Node = current Node. get Parent () ;
/1 Determ ne whet her newNode should be the left or right child of
/1 its new parent. Then, set the appropriate references.
i f(current Node == parent Node. getlLeft())
{
par ent Node. set Lef t (newNode) ;
}
el se
{ .
par ent Node. set Ri ght (newNode) ;
}
}

/1 Make the currentNode the right child

/1 and null the left child of the new node
newNode. set Ri ght (cur r ent Node) ;

newNode. set Left (nul l);

The following is an example C++ class called Queue.

6.2.1 queue.h

#if !defi ned(QUEUE_000001)
#defi ne QUEUE_000001

/
queue. h

Witten by : N ck Steinbaugh
Witten for: JDE310

Dat e . Septenber 3, 2003
Ver si on 1.0

* ok ok Ok % % %

*/

* A class for storing data, specifically integers, in a queue.

*

Version 1.0

@/er si on 1.0, 09/03/2003

*
*
* @wut hor Ni ck Stei nbaugh sol arfl are@nx. net
*/

#define MAX_SI ZE 100

cl ass Queue

t

private:
//Pointer to the head of the queue
int head,

//Pointer to the tail of the queue
int tail;

//Array to store the queue data
int data[MAX_SI ZE] ;

Coding Standards Page 19 1/16/2004

//Bool ean to keep track of whether or not the queue is enpty
bool enpty;
publi c:

/**

* Default constructor
*/

Queue();

| **

* Add an integer to the back of the queue

*

* @aram item The integer to add to the queue

* @eturn Wether or not adding the itemwas successful
*/

bool enqueue(int item;

| **

* Renove and return the first itemin the queue

*

* @aram item The integer to store the value in

* @eturn Wether or not renoving and storing the itemwas successful

*/
bool dequeue(int & tem;

| **

* Get the pointer to the first array el ement of the queue

*

* @eturn The pointer to the location in the array of the first
*/

nt *get Head();

/**

* Check to see if the queue is enpty

*

* @eturn Wether or not the queue is enpty
*/
bool isEnpty() const;

/**

* Check to see if the queue is full

*

* @eturn Wether or not the queue is full
*/
bool isFull () const;

| **

* Get the size of the queue

*

* @eturn The current nunber of itens in the queue
*/
int size() const;

}s
#endi f

6.2.1 queue.cpp

/*

* gueue. cpp

* Witten by : N ck Steinbaugh

* Witten for: JDE310

* Date . Septenber 3, 2003
* Version 1.0

*/

/**

* A class for storing data, specifically integers, in a queue.
*

* Version 1.0

Coding Standards Page 20

item

1/16/2004

* @wut hor Ni ck Stei nbaugh sol arfl are@nx. net
* @/ersion 1.0, 09/03/2003
*/

#i ncl ude "queue. h"

Queue: : Queue()
{

//Set the head and tail pointers to zero and enpty to true

head = 0;
tail = 0;
enpty = true;
}
bool Queue::enqueue(int item
{
/1 Check to see if the queue is full
if(isFull())
return fal se;
/1 Adj ust tail pointer
dataftail] = item
tail ++;
if(tail >= MAX_SI ZE)
tail -= MAX_SI ZE;
empty = fal se;
return true;
}

bool Queue:: dequeue(int & tem

//Check to see if the queue is enpty
i f(isEmty())
return fal se;

/1 Copy queue data to item
item = dat a[head] ;

/1 Adj ust the head pointer
head++;
i f(head >= MAX_SI ZE)

head -= MAX_SI ZE;
if(head == tail)

enpty = true;
return true;

}
int *Queue: : get Head()
{
/1 Get the pointer to the head of the queue
return data + head;
}
bool Queue::isEnpty() const
{
return enpty;
}
bool Queue::isFull() const
{
return !enpty && head == tail;
}

int Queue::size() const

if(tail >= head)
return tail - head;
el se
return tail + MAX_SIZE - head;

Coding Standards Page 21

1/16/2004

