Transform and Conquer

Solve problem by transforming into:

- a more convenient instance of the same problem (instance simplification)
 - presorting
 - Gaussian elimination
- a different representation of the same instance (representation change)
 - balanced search trees
 - heaps and heapsort
 - polynomial evaluation by Horner’s rule
 - Fast Fourier Transform
- a different problem altogether (problem reduction)
 - reductions to graph problems
 - linear programming

Selection Problem

Find the kth smallest element in A[1]...A[n]. Special cases:
- minimum: k = 1
- maximum: k = n
- median: k = \lfloor n/2 \rfloor

Presorting-based algorithm
- sort list
- return A[k]

Partition-based algorithm (Variable decrease & conquer):
- pivot/split at A[i] using partitioning algorithm from quicksort
- if i=k return A[i]
- else if i<k repeat with sublist A[i+1]...A[n]
- else if i>k repeat with sublist A[1]...A[i-1]

Notes on Selection Problem

- Presorting-based algorithm: \Theta(n \log n) + \Theta(1) = \Theta(n \log n)
- Partition-based algorithm (Variable decrease & conquer):
 - worst case: T(n) = T(n-1) + (n+1) \rightarrow \Theta(n^2)
 - best case: \Theta(n)
 - average case: T(n) = T(n/2) + (n+1) \rightarrow \Theta(n)
 - Bonus: also identifies the k smallest elements (not just the kth)
- Special cases max, min: better, simpler linear algorithm (brute force)
- Conclusion: Presorting does not help in this case.
Design and Analysis of Algorithms

Chapter 6

Finding repeated elements

- Presorting-based algorithm:
 - use mergesort (optimal): \(\Theta(n \log n) \)
 - scan array to find repeated adjacent elements: \(\Theta(n) \)
- Brute force algorithm: \(\Theta(n^2) \)

Conclusion: Presorting yields significant improvement

Similar improvement for mode

What about searching?

Left- and Right-Rotations

- The BST property still holds after a rotation.

Binary Tree Rotations

- Left Rotation on (15, 25)

Balanced trees: AVL trees

- For every node, difference in height between left and right subtree is at most 1
- AVL property is maintained through rotations, each time the tree becomes unbalanced
- \(\lg n \leq h \leq 1.44404 \lg (n + 2) - 1.3277 \) average: \(1.01 \lg n + 0.1 \) for large \(n \)
- Disadvantage: needs extra storage for maintaining node balance
- A similar idea: red-black trees (height of subtrees is allowed to differ by up to a factor of 2)

Balance factor

- Algorithm maintains balance factor for each node. For example:
General case: single R-rotation

- Small examples:
 - 1, 2, 3
 - 3, 2, 1
 - 1, 3, 2
 - 3, 1, 2

- Larger example: 4, 5, 7, 2, 1, 3, 6

- See figures 6.4, 6.5 for general cases of rotations;

Double LR-rotation

AVL tree rotations

- Small examples:
 - 1, 2, 3
 - 3, 2, 1
 - 1, 3, 2
 - 3, 1, 2

- Larger example: 4, 5, 7, 2, 1, 3, 6

- See figures 6.4, 6.5 for general cases of rotations;

Heapsort

Definition:

A heap is a binary tree with the following conditions:

- It is essentially complete:

- The key at each node is ≥ keys at its children

Heaps (or not)?

Definition implies:

- Given n, there exists a unique binary tree with n nodes that is essentially complete, with h = ⌈lg n⌉

- The root has the largest key

- The subtree rooted at any node of a heap is also a heap
Heapsort Strategy

- If the elements to be sorted are arranged in a heap, we can build a sorted sequence in reverse order by
 - repeatedly removing the element from the root,
 - rearranging the remaining elements to reestablish the partial order tree property,
 - and so on.

- How does it work?

Heapsort Algorithm:

1. Build heap
2. Remove root (exchange with last (rightmost) leaf)
3. Fix up heap (excluding last leaf)

Repeat 2, 3 until heap contains just one node.

Heap construction

- Insert elements in the order given breadth-first in a binary tree

- Starting with the last (rightmost) parental node, fix the heap rooted at it, if it does not satisfy the heap condition:
 1. exchange it with its largest child
 2. fix the subtree rooted at it (now in the child’s position)

Example: 2 3 6 7 5 9

Heap construction strategy (divide-and-conquer)

- Base case is a tree consisting of one node

Construct Heap Outline

- Input: A heap structure H that does not necessarily have the partial order tree property
- Output: H with the same nodes rearranged to satisfy the partial order tree property
- void constructHeap(H) // Outline
 - if (H is not a leaf)
 - constructHeap (left subtree of H);
 - constructHeap (right subtree of H);
 - Element K = root(H);
 - fixHeap(H, K);
 - return;
- T(n) = T(n-r-1) + T(r) + 2 lg(n) for n > 1 where r is the number of nodes in the right subheap
- T(n) = O(n); heap is constructed in linear time.

Root deletion

The root of a heap can be deleted and the heap fixed up as follows:

- exchange the root with the last leaf
- compare the new root (formerly the leaf) with each of its children and, if one of them is larger than the root, exchange it with the larger of the two
- continue the comparison/exchange with the children of the new root until it reaches a level of the tree where it is larger than both its children
Heapsort Outlines

- heapSort(E, n) // Outline
 - construct H from E, the set of n elements to be sorted
 for (i = n; i >= 1; i--)
 curMax = getMax(H)
 deleteMax(H);
 E[i] = curMax;
- deleteMax(H) // Outline
 - copy the rightmost element of the lowest level of H into K
 - delete the rightmost element on the lowest level of H
 - fixHeap(H, K); // reinsert K into a heap H with a vacant root assumed

FixHeap Outline

- fixHeap(H, K) // Outline
 - if (H is a leaf)
 insert K in root(H);
 - else
 set largerSubHeap to leftSubtree(H) or rightSubtree(H), whichever has larger key at is root. This involves one key comparison.
 if (key [root(largerSubHeap).key])
 insert K in root(H);
 - else
 insert root(largerSubHeap) in root(H);
 fixHeap(largerSubHeap, K);
 return;
- fixHeap requires 2h comparisons in the worst case on a heap with height k. T(n) = 2 lg n

Bottom-up heap construction algorithm

Algorithm HeapBottomUp(H[1..n])
//Constructs a heap from the elements of a given array
//Input: An array H[1..n] of orderable items
//Output: A heap H[1..n]
For i = ⌊n/2⌋ downto 1 do
 heap = false
 while not heap and 2 * k ≤ n do
 if j < n //there are two children
 if H[j] < H[i + k]
 j ← j + 1
 else
 heap ← true
 H[i] ← H[2j]; k ← j
 H[2j] ← 0

Analysis of Heapsort

See algorithm HeapBottomUp in section 6.4
- Fix heap with “problem” at height j: 2j comparisons
- For subtree rooted at level i it does 2(h-i) comparisons
- Total for heap construction phase:
 \[
 \sum_{j=1}^{\lfloor n/2 \rfloor} 2^{(h-i)} \leq 2 (n - \log (n + 1)) = \Theta(n)
 \]
 # nodes at level i
Recall algorithm:
1. Build heap
2. Remove root - exchange with last (rightmost) leaf
3. Fix up heap (excluding last leaf)

Repeat 2, 3 until heap contains just one node.

\[
T = n - 1 \text{ times}
\]

Total: \(\Theta(n) + \Theta(n \log n) = \Theta(n \log n) \)

* Note: this is the worst case. Average case also \(\Theta(n \log n) \).

A priority queue is the ADT of an ordered set with the operations:
- find element with highest priority
- delete element with highest priority
- insert element with assigned priority

Heaps are very good for implementing priority queues

Insertion of a new element
- Insert element at last position in heap.
- Compare with its parent and if it violates heap condition exchange them
- Continue comparing the new element with nodes up the tree until the heap condition is satisfied

Example:

Efficiency:

Top-down: Heaps can be constructed by successively inserting elements into an (initially) empty heap

Bottom-up: Put everything in and then fix it

Which one is better?