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� Giving credit where credit is due:
• Most of the lecture notes are based on the slides from 

the Textbook’s companion website
– http://www.aw.com/cssupor t/

• Some examples and slides are based on lecture notes 
created by Dr . Ben Choi, Louisiana Technical University 
and Dr . Chuck Cusack, UNL 

• I  have modified many of their  slides and added new 
slides.
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The most well known algor ithm design strategy:
1. Divide instance of problem into two or  more smaller  

instances

2. Solve smaller  instances recursively

3. Obtain solution to or iginal (larger) instance by combining 
these solutions
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subproblem 2 
of size n/2

subproblem 1 
of size n/2

a solution to 
subproblem 1

a solution to
the or iginal problem

a solution to 
subproblem 2

a problem of size n
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� Sorting: mergesor t and quicksor t

� Tree traversals

� Binary search

� Matr ix multiplication-Strassen’salgor ithm

� Convex hull-QuickHull algor ithm
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T(n) = aT(n/b) + f (n) where f (n) ����
�

(nk)

1. a < bk T(n) ����
�

(nk)
2. a = bk T(n) ����

�
(nk lg n )

3. a > bk T(n) ����
�

(nlog b a)

Note: the same results hold with O instead of 
�

.
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Algor ithm:
� Split ar ray A[1..n] in two and make copies of each half in 

ar rays B[1.. n/2 ] and C[1.. n/2 ]

� Sort ar rays B and C
� Merge sor ted ar rays B and C into ar ray A as follows:

• Repeat the following until no elements remain in one of the ar rays:
– compare the first elements in the remaining unprocessed por tions of 

the ar rays

– copy the smaller  of the two into A, while incrementing the index
indicating the unprocessed por tion of that ar ray 

• Once all elements in one of the ar rays are processed, copy the 
remaining unprocessed elements from the other  ar ray into A.
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� Mergesor t Strategy

Sorted

Merge

Sorted Sorted

Sort recursively 
by Mergesort

Sort recursively 
by Mergesort

first last

����(first ++++ last)////2����
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Animated Example: 
http://www.cs.hope.edu/~alganim/animator /Animator .html

Another  animated example: 
http://math.hws.edu/TMCM/java/xSor tLab/index.html
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Input: Array E and indices first and last, such that the 
elements E[i] are defined for  first <= i <= last.

Output: E[first], …, E[last] is a sor ted rearrangement of 
the same elements

void mergeSor t(Element[] E, int first, int last)
if (first < last)

int mid = (first+last)/2;
mergeSor t(E, first, mid);
mergeSor t(E, mid+1, last);
merge(E, first, mid, last);

return;
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� Problem: 
• Given two sequences A and B sor ted in nondecreasing order , merge

them to create one sor ted sequence C

� Strategy: 
• Determine the first item in C 

• I t is the minimum between the first items of A and B. 
– Suppose it is the first items of A. 

– Then, rest of C consisting of merging rest of A with B.
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� Merge(A, B, C)
if (A is empty)

rest of C = rest of B

else if (B is empty)

rest of C = rest of A

else if (first of A ≤≤≤≤ first of B)
first of C = first of A

merge (rest of A, B, rest of C)

else

first of C = first of B

merge (A, rest of B, rest of C)

return

� W(n) = n – 1
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� Run-time: The number  of basic operations per formed (e.g., 
compare and swap)

� Memory: The amount of memory used beyond what is 
needed to store the data being sor ted
• “ In place”  algor ithms use a constant amount of extra memory—the 

constant may be zero

• Other  algor ithms are descr ibed as linear  or  exponential with 
respect to the space used.

• Less is better , but there is often a space/time trade-off.

� Stability: An algor ithm is stable if it preserves the relative 
order  of equal keys
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� Mergesor t always par titions the ar ray equally.

� Thus, the recursive depth is always ΟΟΟΟ(lg n)

� The amount of work done at each level is ΟΟΟΟ(n)
� Intuitively, the complexity should be ΟΟΟΟ(n lg n)
� Once again we have, 

• T(n) ≤≤≤≤ 2T(n/2) ++++ ΘΘΘΘ(n) ���� ΘΘΘΘ(n lg n)

� The amount of extra memory used is ΟΟΟΟ(n)
� Note: Mergesor t is stable
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� Number  of compar isons is close to theoretical minimum for  
compar ison-based sor ting: 
• log n !   � n lg n  - 1.44 n

� Space requirement: 
�

( n ) (NOT in-place)

� Can be implemented without recursion (bottom-up)

� All cases have same efficiency: 
�

( n log n) 
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� Select a pivot (partitioning element)
� Rearrange the list so that all the elements in the positions 

before the pivot are smaller  than or  equal to the pivot and 
those after  the pivot are larger  than the pivot (See 
algor ithm Partition in section 4.2)

� Exchange the pivot with the last element in the first (i.e., �
sublist) – the pivot is now in its final position

� Sort the two sublists recursively

p

A[i]�p A[i]>p
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Animated Example: 
http://www.cs.hope.edu/~alganim/animator /Animator .html

Another  animated example: 
http://math.hws.edu/TMCM/java/xSor tLab/index.html
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� Recursive implementation with the left most ar ray 
entry selected as the pivot element.
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� Input: Ar ray E and indices first, and last, s.t. elements 
E[i] are defined for  first ≤≤≤≤ i ≤≤≤≤ last

� Ouput: E[first], …, E[last] is a sor ted rearrangement of 
the ar ray

� Void quickSor t(Element[] E, int first, int last)
if (first < last)

Element pivotElement = E[first];
Key pivot = pivotElement.key;
int splitPoint = par tition(E, pivot, first, last);
E[splitpoint] = pivotElement;
quickSor t (E, first, splitPoint –1 );
quickSor t (E, splitPoint +1, last );

return;
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� Par tition can be done in O(n) time, where n is 
the size of the array

� Let T(n) be the number  of compares required 
by Quicksor t

� I f the pivot ends up at position k, then we have
• T(n) ====T(n−−−−k) ++++ T(k −−−−1) ++++ n

� To determine best-, worst-, and average-case 
complexity we need to determine the values of k
that cor respond to these cases.
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� The best case is clear ly when the pivot always 
par titions the array equally.

� Intuitively, this would lead to a recursive depth of 
at most lg n calls

� We can actually prove this.  In this case 
• T(n) ≤≤≤≤ T(n/2) ++++ T(n/2) ++++ n ���� ΘΘΘΘ(n lg n)
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� The worst-case is when the pivot always ends up in 
the first or  last element.  That is, par titions the 
ar ray as unequally as possible.

� In this case 
• T(n) ==== T(n−−−−1) ++++ T(1−−−−1) ++++ n ==== T(n−−−−1) ++++ n

==== n ++++ (n−−−−1) ++++ … + 1

==== n(n ++++ 1)/2 ���� ΟΟΟΟ(n2)

� Average case is rather  complex, but is where the 
algor ithm earns its name. The bottom line is:

)lg(lg386.1)( nnnnnA Θ�≈
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� Best case: split in the middle —
�

( n log n) 
� Worst case: sor ted ar ray! —

�
( n2) 

� Average case: random arrays —
�

( n log n)

� Improvements:
• better  pivot selection: median of three par titioning avoids worst 

case in sor ted files
• switch to inser tion sor t on small subfiles
• elimination of recursion
these combine to 20-25% improvement

� Considered the method of choice for  internal sor ting for  
large files (n � 10000)



5

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 25

&���')��� ����
�����

Inspired by Quicksor t compute Convex Hull:
� Assume points are sor ted by x-coordinate values

� Identify extreme points P1 and P2 (par t of hull)
� Compute upper  hull:

• find point Pmax that is far thest away from line P1P2

• compute the hull of the points to the left of line P1Pmax

• compute the hull of the points to the left of line PmaxP2

� Compute lower hull in a similar  manner

P1

P2

Pmax
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� Finding point far thest away from line P1P2 can be done in 
linear  time

� This gives same efficiency as quicksor t: 
• Worst case: � ( n2) 
• Average case: � ( n log n)

� I f points are not initially sor ted by x-coordinate value, this 
can be accomplished in 

�
( n log n) — no increase in 

asymptotic efficiency class
� Other  algor ithms for  convex hull:

• Graham’s scan
• DCHull
also in � ( n log n) 


