Design and Analysis of Algorithms

Chapter 4

CSCE 310): Data Structures & Algorithms

Divide & Conquer!
Dr. Steve Goddard
goddard@cse.unl.edu

http:/lwww.cse.unl.edu/~goddard/Courses/CSCE310J

Design and Analysis of Algorithms - Chapter 4

CSCE 310): Data Structures & Algorithms

& Giving credit where credit isdue:

* Most of thelecture notes are based on the slides from

the Textbook’s companion website
— http://www.aw.com/cssuport/

« Some examples and slides are based on lecture notes
created by Dr. Ben Choi, Louisiana Technical University
and Dr. Chuck Cusack, UNL

« | have modified many of their slides and added new
slides.

Design and Analysis of Algorithms - Chapter 4 2

The most well known algorithm design strategy:

1. Divideinstance of problem into two or more smaller
instances

2. Solve smaller instancesrecursively

3. Obtain solution to original (larger) instance by combining
these solutions

Design and Analysis of Algorithms - Chapter 4

aproblem of sizen

subproblem 2
of sizen/2

asolution to
subproblem 2

subproblem 1
of sizen/2

asolution to
subproblem 1

asolution to
theoriginal problem

Design and Analysis of Algorithms - Chapter 4 4

& Sorting: mergesort and quicksort

o Treetraversals

& Binary search

£ Matrix multiplication-Strassen’s algorithm

& Convex hull-QuickHull algorithm

Design and Analysis of Algorithms - Chapter 4

T(n) =aT(n/b) +f (n) wheref (n) e O(nk)

1 a<bk T(n) € O(nX)
2. a=hk T(n) e ®(nkign)
3. a>bk T(n) € O(n'09»3)

Note: the sameresults hold with O instead of ©.

Design and Analysis of Algorithms - Chapter 4 6

Design and Analysis of Algorithms

Mergesort

Algorithm:
& Split array A[1..n] in two and make copies of each half in
arraysB[1.|n/2[] and crln2

§ SortarraysBand C

o Mergesorted arraysB and C into array A asfollows:
* Repeat the following until no elementsremain in one of the arrays:
— comparethefirst elementsin the remaining unprocessed portions of
thearrays
— copy the smaller of thetwo into A, whileincrementing the index
indicating the unprocessed portion of that array
« Onceall elementsin one of the arraysare processed, copy the
remaining unprocessed elements from the other array into A.

Design and Analysis of Algorithms - Chapter 4 7

Chapter 4

Using Divide and Conquer: Mergesort

£ Mergesort Strategy
L('irst + Iast)lz]

first last

Sort recursively Sort recursively

by Mergesort by Mergesort
Sorted ‘ Sorted
\ Merge /
Sorted

Design and Analysis of Algorithms - Chapter 4

Mergesort Examples

Animated Example:
http://www.cs.hope.edu/~alganim/animator/Animator .html
Another animated example:
http://math.hws.edu/TM CM/java/xSortL ab/index.html

Design and Analysis of Algorithms - Chapter 4 9

Algorithm: Mergesort

Input: Array E and indicesfirst and last, such that the
elements E[i] are defined for first <=i <=last.
Output: E[first], ..., E[last] isa sorted rearrangement of
the same elements
void mergeSort(Element[] E, int first, int last)
if (first < last)
int mid = (first+last)/2;
mergeSort(E, first, mid);
mergeSort(E, mid+1, last);
merge(E, first, mid, last);
return;

Design and Analysis of Algorithms - Chapter 4

Merging Sorted Sequences

& Problem:
« Given two sequences A and B sorted in nondecr easing order, merge
them to create one sorted sequence C
& Strategy:
« Determinethefirstitemin C
It isthe minimum between thefirst items of A and B.
— Supposeit isthefirst itemsof A.
— Then, rest of C consisting of merging rest of A with B.

Design and Analysis of Algorithms - Chapter 4 1

& Merge(A, B, C)
if (A isempty)
rest of C=rest of B
elseif (B isempty)
restof C=rest of A
elseif (first of A <first of B)
first of C =first of A
merge (rest of A, B, rest of C)
else
first of C =firstof B
merge (A, rest of B, rest of C)
return
Q& Wh)=n-1

Design and Analysis of Algorithms - Chapter 4

Design and Analysis of Algorithms

Evaluating Sort Algorithms

& Run-time: The number of basic operations performed (e.g.,
compare and swap)

£ Memory: The amount of memory used beyond what is
needed to store the data being sorted

* “Inplace” algorithmsuse a constant amount of extra memory—the
constant may be zero

« Other algorithms are described aslinear or exponential with
respect to the space used.
« Lessisbetter, but thereisoften a space/time trade-off.
§ Stability: An algorithm isstableif it preservestherelative
order of equal keys

Design and Analysis of Algorithms - Chapter 4 13

Efficiency of mergesort

& All cases have same efficiency: @(n log n)

£ Number of comparisonsis close to theoretical minimum for
comparison-based sorting:
e flognf = [nign -1.44n]
& Spacerequirement: @(n) (NOT in-place)

& Can beimplemented without recursion (bottom-up)

Design and Analysis of Algorithms - Chapter 4 15

The partition algorithm

Algorithm Partition(A[l.)
/ [Partitions a subarray by using is first element as a pivot
//Iput: A subarray A[l..r] of A[0..n — 1], defined by its left and right
indices ! and r (I < r)
/{Output: A partition of A[l.r], with the split position returned as
this function’s value
? < Afl]
il jertl
repeat
repeat i < i+ 1 until A[]] 2p
repeat j «+ j — 1 until A[j] - p
swap(Ald], Alj])
until ¢ > j
swap(Ald], Alj]) /fundo lash swap when i > j
swap(All], Alj])
return j

Design and Analysis of Algorithms - Chapter 4 17

Chapter 4

Mergesort Complexity

£ Mergesort always partitionsthe array equally.
& Thus, the recursive depth isalways O(lg n)
& Theamount of work done at each level is O(n)
& Intuitively, the complexity should be O(n Ig n)
£ Once again we have,

* T(n) <2T(n/2) + ©(n) = O(n Ign)
&£ Theamount of extra memory used is O(n)
£ Note: Mergesort isstable

Design and Analysis of Algorithms - Chapter 4

Quicksort by Hoare (1962)

& Select a pivot (partitioning element)

& Rearrangethelist so that all the elementsin the positions
before the pivot are smaller than or equal to the pivot and

those after the pivot arelarger than the pivot (See
algorithm Partition in section 4.2)

& Exchangethe pivot with the last element in thefirst (i.e., <

sublist) —the pivot isnow in itsfinal position
& Sort the two sublistsrecursively
7 |
N S S
) e
Alil<p Alil>p

Design and Analysis of Algorithms - Chapter 4

Quicksort

Animated Example:

http://www.cs.hope.edu/~alganim/animator /Animator .html

Another animated example:
http://math.hws.edu/TM CM/java/xSortL ab/index.html

Design and Analysis of Algorithms - Chapter 4

Design and Analysis of Algorithms

Quicksort Example

& Recursiveimplementation with the left most array
entry selected asthe pivot element.

of[15]12T3J2t[25] 3] o 8[18[28] 5]
1[9]12]3] 5] 8] 3| 15[25182821
28] 3[3[5] 9[1z] 15 [2][18] 25 28]
3 & 9 12 15 21 25 28
4[3] 3]s &8 9 12 15 18 21 25 28
53] 3 5 8 9 12 15 18 21 25 28
6 3 3 5 8 9 12 15 18 21 25 28
Design and Analysis of Algorithms - Chapter 4 19
Quicksort Analysis

& Partition can bedonein O(n) time, wheren is
thesize of thearray

& Let T(n) bethe number of comparesrequired
by Quicksort
& If the pivot ends up at position k, then we have
« T(n) =T(n—k) + T(k =1) +n
& To determine best-, worst-, and aver age-case
complexity we need to deter mine the values of k
that correspond to these cases.

Design and Analysis of Algorithms - Chapter 4 21

Worst-Case and Average-Case Complexity

& Thewor st-case iswhen the pivot alwaysendsup in
thefirst or last element. That is, partitionsthe
array asunequally aspossible.

& Inthiscase

e T(N)=T(n-1) +T(A-1) +n=T(n=1) +n
=n+(n-1)+..+1
=n(n+1)/2= 0(nd

&f Average caseisrather complex, but iswherethe
algorithm earnsitsname. The bottom lineis:

Design and Analysis of Algorithms - Chapter 4 23

Chapter 4

Quicksort Algorithm

& Input: Array E and indices first, and last, s.t. elements
E[i] are defined for first <i < last
& Ouput: E[first], ..., E[last] isa sorted rearrangement of
thearray
& Void quickSort(Element[] E, int first, int last)
if (first < last)
Element pivotElement = E[first];
Key pivot = pivotElement.key;
int splitPoint = partition(E, pivot, first, last);
E[splitpoint] = pivotElement;
quickSort (E, first, splitPoint -1);
quickSort (E, splitPoint +1, last);

return;
Design and Analysis of Algorithms - Chapter 4

20

Best-Case Complexity

& Thebest caseis clearly when the pivot always
partitionsthe array equally.

& Intuitively, thiswould lead to a recursive depth of
at most Ig n calls

& Wecan actually provethis. In thiscase
e T(n)<T(n/2) + T(n/2) +n = O(n Ig n)

Design and Analysis of Algorithms - Chapter 4

22

Summary of quicksort

& Best caser split in the middle— @(n log n)
& Worst case: sorted array! — @(n?)
& Average case: random arrays— @(n log n)

& Improvements:

« better pivot selection: median of three partitioning avoids wor st
casein sorted files

« switch toinsertion sort on small subfiles
« elimination of recursion
these combine to 20-25% improvement

& Considered the method of choice for internal sorting for
lar ge files (n > 10000)

Design and Analysis of Algorithms - Chapter 4

24

Design and Analysis of Algorithms

Chapter 4

Inspired by Quicksort compute Convex Hull:
& Assume pointsare sorted by x-coordinate values
& ldentify extreme points P, and P, (part of hull)

&£ Compute upper hull:
« find point P, that isfarthest away from line P,P,
« computethe hull of the pointsto theleft of line PP, .,
« computethe hull of the pointsto theleft of line P, P,

& Compute lower hull in a similar manner

Design and Analysis of Algorithms - Chapter 4

Efficiency of QuickHull algorithm

& Finding point farthest away from line P,P, can be donein
linear time

& Thisgives same efficiency as quicksort:
* Worst case: ©(n?)
« Averagecase: ®(nlogn)

& If pointsarenot initially sorted by x-coordinate value, this
can be accomplished in ®(n logn) — noincreasein
asymptotic efficiency class

& Other algorithmsfor convex hull:

« Graham’sscan
« DCHull
alsoin @(nlogn)

Design and Analysis of Algorithms - Chapter 4

26

