
1

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 1

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

Divide & Conquer!

Dr. Steve Goddard
goddard@cse.unl.edu

���������	�
������������������������

Design and Analysis of Algorithms - Chapter 4 2

� Giving credit where credit is due:
• Most of the lecture notes are based on the slides from

the Textbook’s companion website
– http://www.aw.com/cssupor t/

• Some examples and slides are based on lecture notes
created by Dr . Ben Choi, Louisiana Technical University
and Dr . Chuck Cusack, UNL

• I have modified many of their slides and added new
slides.

���������	�
������������������������

Design and Analysis of Algorithms - Chapter 4 3

����������������

The most well known algor ithm design strategy:
1. Divide instance of problem into two or more smaller

instances

2. Solve smaller instances recursively

3. Obtain solution to or iginal (larger) instance by combining
these solutions

Design and Analysis of Algorithms - Chapter 4 4

��������������������������

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the or iginal problem

a solution to
subproblem 2

a problem of size n

Design and Analysis of Algorithms - Chapter 4 5

��������������������� ���

� Sorting: mergesor t and quicksor t

� Tree traversals

� Binary search

� Matr ix multiplication-Strassen’salgor ithm

� Convex hull-QuickHull algor ithm

Design and Analysis of Algorithms - Chapter 4 6

!������
������������������������	

T(n) = aT(n/b) + f (n) where f (n) ����
�

(nk)

1. a < bk T(n) ����
�

(nk)
2. a = bk T(n) ����

�
(nk lg n)

3. a > bk T(n) ����
�

(nlog b a)

Note: the same results hold with O instead of
�

.

2

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 7

"������

Algor ithm:
� Split ar ray A[1..n] in two and make copies of each half in

ar rays B[1.. n/2] and C[1.. n/2]

� Sort ar rays B and C
� Merge sor ted ar rays B and C into ar ray A as follows:

• Repeat the following until no elements remain in one of the ar rays:
– compare the first elements in the remaining unprocessed por tions of

the ar rays

– copy the smaller of the two into A, while incrementing the index
indicating the unprocessed por tion of that ar ray

• Once all elements in one of the ar rays are processed, copy the
remaining unprocessed elements from the other ar ray into A.

Design and Analysis of Algorithms - Chapter 4 8

#�����
����������������	�"������

� Mergesor t Strategy

Sorted

Merge

Sorted Sorted

Sort recursively
by Mergesort

Sort recursively
by Mergesort

first last

����(first ++++ last)////2����

Design and Analysis of Algorithms - Chapter 4 9

"������ ���� ���

Animated Example:
http://www.cs.hope.edu/~alganim/animator /Animator .html

Another animated example:
http://math.hws.edu/TMCM/java/xSor tLab/index.html

Design and Analysis of Algorithms - Chapter 4 10

��������	�"������

Input: Array E and indices first and last, such that the
elements E[i] are defined for first <= i <= last.

Output: E[first], …, E[last] is a sor ted rearrangement of
the same elements

void mergeSor t(Element[] E, int first, int last)
if (first < last)

int mid = (first+last)/2;
mergeSor t(E, first, mid);
mergeSor t(E, mid+1, last);
merge(E, first, mid, last);

return;

Design and Analysis of Algorithms - Chapter 4 11

"���������������������

� Problem:
• Given two sequences A and B sor ted in nondecreasing order , merge

them to create one sor ted sequence C

� Strategy:
• Determine the first item in C

• I t is the minimum between the first items of A and B.
– Suppose it is the first items of A.

– Then, rest of C consisting of merging rest of A with B.

Design and Analysis of Algorithms - Chapter 4 12

��������	�"���

� Merge(A, B, C)
if (A is empty)

rest of C = rest of B

else if (B is empty)

rest of C = rest of A

else if (first of A ≤≤≤≤ first of B)
first of C = first of A

merge (rest of A, B, rest of C)

else

first of C = first of B

merge (A, rest of B, rest of C)

return

� W(n) = n – 1

3

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 13

������������������������

� Run-time: The number of basic operations per formed (e.g.,
compare and swap)

� Memory: The amount of memory used beyond what is
needed to store the data being sor ted
• “ In place” algor ithms use a constant amount of extra memory—the

constant may be zero

• Other algor ithms are descr ibed as linear or exponential with
respect to the space used.

• Less is better , but there is often a space/time trade-off.

� Stability: An algor ithm is stable if it preserves the relative
order of equal keys

Design and Analysis of Algorithms - Chapter 4 14

"������ ��� �����$

� Mergesor t always par titions the ar ray equally.

� Thus, the recursive depth is always ΟΟΟΟ(lg n)

� The amount of work done at each level is ΟΟΟΟ(n)
� Intuitively, the complexity should be ΟΟΟΟ(n lg n)
� Once again we have,

• T(n) ≤≤≤≤ 2T(n/2) ++++ ΘΘΘΘ(n) ���� ΘΘΘΘ(n lg n)

� The amount of extra memory used is ΟΟΟΟ(n)
� Note: Mergesor t is stable

Design and Analysis of Algorithms - Chapter 4 15

�%%������$��%��������

� Number of compar isons is close to theoretical minimum for
compar ison-based sor ting:
• log n ! � n lg n - 1.44 n

� Space requirement:
�

(n) (NOT in-place)

� Can be implemented without recursion (bottom-up)

� All cases have same efficiency:
�

(n log n)

Design and Analysis of Algorithms - Chapter 4 16

&���'����($�)���*�+,-.

� Select a pivot (partitioning element)
� Rearrange the list so that all the elements in the positions

before the pivot are smaller than or equal to the pivot and
those after the pivot are larger than the pivot (See
algor ithm Partition in section 4.2)

� Exchange the pivot with the last element in the first (i.e., �
sublist) – the pivot is now in its final position

� Sort the two sublists recursively

p

A[i]�p A[i]>p

Design and Analysis of Algorithms - Chapter 4 17

/��� ����������������

Design and Analysis of Algorithms - Chapter 4 18

&���'���

Animated Example:
http://www.cs.hope.edu/~alganim/animator /Animator .html

Another animated example:
http://math.hws.edu/TMCM/java/xSor tLab/index.html

4

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 19

&���'�������� ��

� Recursive implementation with the left most ar ray
entry selected as the pivot element.

Design and Analysis of Algorithms - Chapter 4 20

&���'������������

� Input: Ar ray E and indices first, and last, s.t. elements
E[i] are defined for first ≤≤≤≤ i ≤≤≤≤ last

� Ouput: E[first], …, E[last] is a sor ted rearrangement of
the ar ray

� Void quickSor t(Element[] E, int first, int last)
if (first < last)

Element pivotElement = E[first];
Key pivot = pivotElement.key;
int splitPoint = par tition(E, pivot, first, last);
E[splitpoint] = pivotElement;
quickSor t (E, first, splitPoint –1);
quickSor t (E, splitPoint +1, last);

return;

Design and Analysis of Algorithms - Chapter 4 21

&���'��������$���

� Par tition can be done in O(n) time, where n is
the size of the array

� Let T(n) be the number of compares required
by Quicksor t

� I f the pivot ends up at position k, then we have
• T(n) ====T(n−−−−k) ++++ T(k −−−−1) ++++ n

� To determine best-, worst-, and average-case
complexity we need to determine the values of k
that cor respond to these cases.

Design and Analysis of Algorithms - Chapter 4 22

0������������ �����$

� The best case is clear ly when the pivot always
par titions the array equally.

� Intuitively, this would lead to a recursive depth of
at most lg n calls

� We can actually prove this. In this case
• T(n) ≤≤≤≤ T(n/2) ++++ T(n/2) ++++ n ���� ΘΘΘΘ(n lg n)

Design and Analysis of Algorithms - Chapter 4 23

1���������������������������� �����$

� The worst-case is when the pivot always ends up in
the first or last element. That is, par titions the
ar ray as unequally as possible.

� In this case
• T(n) ==== T(n−−−−1) ++++ T(1−−−−1) ++++ n ==== T(n−−−−1) ++++ n

==== n ++++ (n−−−−1) ++++ … + 1

==== n(n ++++ 1)/2 ���� ΟΟΟΟ(n2)

� Average case is rather complex, but is where the
algor ithm earns its name. The bottom line is:

)lg(lg386.1)(nnnnnA Θ�≈
Design and Analysis of Algorithms - Chapter 4 24

�����$��%�����'���

� Best case: split in the middle —
�

(n log n)
� Worst case: sor ted ar ray! —

�
(n2)

� Average case: random arrays —
�

(n log n)

� Improvements:
• better pivot selection: median of three par titioning avoids worst

case in sor ted files
• switch to inser tion sor t on small subfiles
• elimination of recursion
these combine to 20-25% improvement

� Considered the method of choice for internal sor ting for
large files (n � 10000)

5

Design and Analysis of Algorithms Chapter 4

Design and Analysis of Algorithms - Chapter 4 25

&���')��� ���������

Inspired by Quicksor t compute Convex Hull:
� Assume points are sor ted by x-coordinate values

� Identify extreme points P1 and P2 (par t of hull)
� Compute upper hull:

• find point Pmax that is far thest away from line P1P2

• compute the hull of the points to the left of line P1Pmax

• compute the hull of the points to the left of line PmaxP2

� Compute lower hull in a similar manner

P1

P2

Pmax

Design and Analysis of Algorithms - Chapter 4 26

�%%������$��%�&���')��� ��������

� Finding point far thest away from line P1P2 can be done in
linear time

� This gives same efficiency as quicksor t:
• Worst case: � (n2)
• Average case: � (n log n)

� I f points are not initially sor ted by x-coordinate value, this
can be accomplished in

�
(n log n) — no increase in

asymptotic efficiency class
� Other algor ithms for convex hull:

• Graham’s scan
• DCHull
also in � (n log n)

