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Giving credit where credit is due:
• Most of the lecture notes are based on the slides from 

the Textbook’s companion website
– http://www.aw.com/cssuport/

• Several slides are from William Spears of the University 
of Wyoming

• I have modified them and added new slides

CSCE 310J: Data Structures & Algorithms
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Analysis of Algorithms

Issues:
• Correctness
• Time efficiency
• Space efficiency
• Optimality

Approaches: 
• Theoretical analysis
• Empirical analysis
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Theoretical analysis of time efficiency
Time efficiency is analyzed by determining the number of 

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most 
towards the running time of the algorithm.

T(n) ≈ copC(n)
running time execution time

for basic operation
Number of times 
basic operation is 

executed

input size
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Input size and basic operation examples

Basic operationInput size measureProblem

Visiting a vertex or 
traversing an edge#vertices and/or edgesGraph problem

Floating point 
multiplicationnCompute an

Floating point 
multiplicationDimensions of matricesMultiply two matrices of 

floating point numbers

Key comparisonNumber of items in list nSearch for key in list of n
items
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Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g.,  milliseconds) 

OR

Count actual number of basic operations 

Analyze the empirical data
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Best-case, average-case, worst-case

For some algorithms efficiency depends on type of input:

Worst case:    W(n) – maximum over inputs of size n

Best case:        B(n) – minimum over inputs of size n

Average case: A(n) – “average” over inputs of size n
• Number of times the basic operation will be executed on typical input
• NOT the average of worst and best case
• Expected number of basic operations repetitions considered as a 

random variable under some assumption about the probability 
distribution of all possible inputs of size n
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Example: Sequential search

Problem: Given a list of n elements and a search key K, find 
an element equal to K, if any.
Algorithm: Scan the list and compare its successive 
elements with K until either a matching element is found 
(successful search) of the list is exhausted (unsuccessful 
search)
Worst case

Best case

Average case
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Types of formulas for basic operation count

Exact formula
e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific 
multiplicative constant

e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown 
multiplicative constant

e.g., C(n) ≈ cn2

Design and Analysis of Algorithms - Chapter 2 10

Order of growth 

Most important: Order of growth within a constant multiple 
as n→∞

Example:
• How much faster will algorithm run on computer that is twice as fast?

• How much longer does it take to solve problem of double input size?

See table 2.1 

Design and Analysis of Algorithms - Chapter 2 11

Table 2.1
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Asymptotic growth rate

A way of comparing functions that ignores constant factors 
and small input sizes

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as  g(n)

see figures 2.1, 2.2, 2.3
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Big-oh

Design and Analysis of Algorithms - Chapter 2 14

Big-omega
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Big-theta

Design and Analysis of Algorithms - Chapter 2 16

Establishing rate of growth: Method 1 – using limits

limn→∞ T(n)/g(n) = 

0     order of growth of T(n) ___ order of growth of g(n)

c>0     order of growth of T(n) ___ order of growth of g(n)

∞ order of growth of T(n) ___ order of growth of g(n)

Examples:
• 10n vs.             2n2

• n(n+1)/2       vs.             n2

• logb n vs.             logc n
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L’Hôpital’s rule

If
limn→∞ f(n) = limn→∞ g(n) = ∞

The derivatives f´, g´ exist,

Then

f(n)
g(n)

lim
n→∞

= 
f ´(n)
g ´(n)

lim
n→∞
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An Example
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Another Example
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Establishing rate of growth: Method 2 – using definition

f(n) is O(g(n)) if order of growth of  f(n) ≤ order  of growth 
of g(n) (within constant multiple)
There exist positive constant c and non-negative integer n0
such that

f(n) ≤ c g(n) for every n ≥ n0 

Examples:
10n is O(2n2)

5n+20 is O(10n)
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Basic Asymptotic Efficiency classes

factorialn!

exponential2n

cubicn3

quadraticn2

n log nn log n

linearn

logarithmiclog n

constant1
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Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up summation for C(n) reflecting algorithm’s loop structure

Simplify summation using standard formulas (see Appendix A)
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Examples:

Matrix multiplication 

Selection sort

Insertion sort

Mystery Algorithm
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Matrix multipliacation
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Selection sort

Design and Analysis of Algorithms - Chapter 2 26

Insertion sort
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Mystery algorithm

for i := 1 to n - 1 do
max := i ;
for j := i + 1 to n do

if |A[ j, i ]| > |A[ max, i ]| then max := j ;
for k := i  to n + 1 do

swap A[ i, k ]  with  A[ max, k ];
for j := i + 1 to n do

for k := n + 1 downto i do
A[ j, k ] := A[ j, k ]  - A[ i, k ] * A[ j, i ] / A[ i, i ] ;
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Programming with Recursion

Recursion is similar to a proof by induction:
• There must be a base (trivial) case.
• The recursion is assumed to hold for all k < N.
• The Nth case is built from the k < N cases.
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Asside: Recall Proof by Induction

Proof by (strong) induction:
• Show theorem true for trivial case(s). Then, 

assuming theorem true up to case N, show true 
for N+1. Thus true for all N.
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Proof that T(N) >= F(N)

)1(1)1()()1(
:case1 for the prove Now

1 , allfor  holds  theoremAssume
).1()()1( and 

)1()()1( that know We
2242

1111
1010 :cases Base

+=+≥−+>+
+

≤≤
−+=+

−+>+
=≥=

=≥=
=≥=

NF) F(N- F(N) NTNTNT
 N

Nkk
NFNFNF

NTNTNT
. )  F(  )  T(

. )  F(  )  T(
, )  F(  ) T(



6

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 31

Proof that F(N) >= (3/2)N
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Back to Recursion:
Example Recursive evaluation of n !

Definition: n ! = 1*2*…*(n-1)*n

Recursive definition of n!:

Algorithm:
if n=0 then F(n) := 1

else F(n) := F(n-1) * n
return F(n) 

Recurrence for number of multiplications to compute n!:
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Time efficiency of recursive algorithms
Steps in mathematical analysis of recursive algorithms:

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up a recurrence relation and initial condition(s) for C(n)-the 
number of times the basic operation will be executed for an input of size 
n (alternatively count recursive calls). 

Solve the recurrence to obtain a closed form or estimate the order of 
magnitude of the solution (see Appendix B)

Design and Analysis of Algorithms - Chapter 2 34

Important recurrence types:
One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d
Solution: T(n) =  (n-1)c + d                          linear

A pass through input reduces problem size by one.
T(n) = T(n-1) + cn T(1) = d
Solution: T(n) =  [n(n+1)/2 – 1] c + d           quadratic

One (constant) operation reduces problem size by half. 
T(n) = T(n/2) + c T(1) = d
Solution: T(n) =  c lg n + d                           logarithmic

A pass through input reduces problem size by half.
T(n) = 2T(n/2) + cn                    T(1) = d
Solution: T(n) =  cn lg n + d n                         n log n
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A general divide-and-conquer recurrence

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)

1. a < bk T(n) ∈ Θ(nk)
2. a = bk T(n) ∈ Θ(nk lg n )
3. a > bk T(n) ∈ Θ(nlog b a)

Note: the same results hold with O instead of Θ.

Design and Analysis of Algorithms - Chapter 2 36

Math Review: Exponents

XA XB = XA+B (not XAB !!)
XA / XB = XA-B

(XA )B = XAB

XA + XA = 2XA

2A + 2A = 2A+1
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Logarithms

Definition: XA = B if and only if  logXB = A (x is 
the “base” of the logarithm).
• Example: 102 = 100  means  log10100 = 2.

Theorems
logXAB = logXA + logXB 
logXA/B = logXA – logXB
logX AB = B logXA
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Logarithms…

Theorem: logAB = logCB / logCA
Proof: Let X = logCB, Y = logCA, and Z = logAB. By 

the definition of logarithm: CX = B, CY = A, and 
AZ = B.

Thus CX = B = AZ = CYZ , X = YZ, Z = X/Y.
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Logarithms…

The notation for logs can be confusing. There are 
two alternatives:
• log2(x) = log (log x)          or
• log2(x) = (log x)2

Generally, we use the 2nd definition.
Note: log2(x) is not (log x2)
Note: log is not a multiplicative entity, it is a 
function.
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Series

Proof by Gauss when 9 years old (?!):
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Finite Series
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Finite Series

Proof:
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Finite Series

Proof:
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Finite Series

Proof:
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General Rules for Sums

i

i
i

kki

i
i

kn

kmi
i

n

mi
ki

i
i

i
i

i
i

i
ii

i
i

n

mi

n

mi

xaxxa

aa

acca

baba

mnccc

∑∑

∑∑

∑∑

∑∑∑

∑∑

=

=

=

+=+

+−==

+

+

+==
+

==

)(

)1(1


