Design and Analysis of Algorithms

CSCE 3tJ: Data Structures & Algorithms

Analysis of Algorithms
Dr. Steve Goddard
goddard@cse.unl.edu

http://lwww.cse.unl.edu/~goddard/Courses/CSCE310J

Design and Analysis of Algorithms - Chapter 2

Chapter 2

CSCE 3t0J: Data Structures & Algorithms

& Giving credit where credit is due:
* Most of the lecture notes are based on the slides from
the Textbook’s companion website
— http://www.aw.com/cssuport/
* Several slides are from William Spears of the University
of Wyoming
* I have modified them and added new slides

Design and Analysis of Algorithms - Chapter 2 2

Analysis of Algorithms

& Issues:
¢ Correctness
¢ Time efficiency
* Space efficiency
* Optimality

& Approaches:

* Theoretical analysis
¢ Empirical analysis

Design and Analysis of Algorithms - Chapter 2

For

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size

& Basic operation: the operation that contributes most
towards the running time of the algorithm.

Input size and basic operation examples

Basic operation

Problem Input size measure

Search for key in list of n

) Number of items in list n | Key comparison
items

Floating point
multiplication

Multiply two matrices of

N) Dimensions of matrices
floating point numbers

Floating point

n
Compute a n multiplication

Visiting a vertex or

Graph problem traversing an edge

#vertices and/or edges

Design and Analysis of Algorithms - Chapter 2

input size
/T(n) N/\,CopC n)
running time ayecution time Number of times
for basic operation basic operation is
executed

L
-
- Design and Analysis of Algorithms - Chapter 2 4

Empirical analysis of time efficiency

& Select a specific (typical) sample of inputs

& Use physical unit of time (e.g., milliseconds)

OR

& Count actual number of basic operations

& Analyze the empirical data

Design and Analysis of Algorithms - Chapter 2 6

R

Design and Analysis of Algorithms

Best-case, average-case, worst-case

For some algorithms efficiency depends on type of input:

& Worst case:

& Best case:

W(n) — maximum over inputs of size n

B(n) — minimum over inputs of size n

& Average case: A(N) — “average” over inputs of size n

Number of times the basic operation will be executed on typical input
NOT the average of worst and best case

Expected number of basic operations repetitions considered as a
random variable under some assumption about the probability
distribution of all possible inputs of size n

Design and Analysis of Algorithms - Chapter 2 7

Types offormulas for basic operation count

& Exact formula
e.g., C(n) =n(n-1)/2

& Formula indicating order of growth with specific
multiplicative constant

& Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) = 0.5 n?

e.g., C(n) = cn?

Design and Analysis of Algorithms - Chapter 2 9

Table 22

n [log;n n nlogan n® n3 an n!
W38 100 83107 107 107 10° 3.6-107
100 66 10 6610° 10° 10° 13109 9.310%7
100 10 1w0® 1010t ' 10f

w13 19 1310% 108 10'2

109 17 105 17108 100 1pe

100 20 10° 20107 10" 10

Table 2.1

Values (some approximate) of several functions important
for analysis of algorithms

Design and Analysis of Algorithms - Chapter 2 1

Chapter 2

Example: Sequential search

444

& Problem: Given a list of n elements and a search key K, find
an element equal to K, if any.

& Algorithm: Scan the list and compare its successive
elements with K until either a matching element is found

(successful search) of the list is exhausted (unsuccessful
search)

& Worst case
& Best case
& Average case

C - Design and Analysis of Algorithms - Chapter 2 8

Order abgrowth

e

& Most important: Order of growth within a constant multiple
as N—o

& Example:

¢ How much faster will algorithm run on computer that is twice as fast?

* How much longer does it take to solve problem of double input size?

& See table 2.1

. Design and Analysis of Algorithms - Chapter 2 10

Asymptotic growth rate

vy

£ A way of comparing functions that ignores constant factors
and small input sizes

£ O(g(n)): class of functions f(n) that grow no faster than g(n)
9 O (g(n)): class of functions f(n) that grow at same rate as g(n)

9 Q(g(n)): class of functions f(n) that grow at least as fast as g(n)

see figures 2.1, 2.2,2.3

Design and Analysis of Algorithms - Chapter 2 12

Design and Analysis of Algorithms

doesn't
maller
»n
]
NS
:ii' Figure 2.1 Big oh notation: #(n) € O(g(n)) 13

Figure 2.3 Big-theta notation: t{n} € ©(g(n)} 15

-
J»

L'Hé6pital's rule

If
& lim_, f(n)y=1lim,_,_g(n)=w

& The derivatives f’, g~ exist,

Then

lim O _ jim O

A () BN ()]

o Design and Analysis of Algorithms - Chapter 2 17

Chapter 2

Big-omega

T

Fig. 2.2 Big-omega notation: t(n) € {}{g(n))

stablishifig rate of growth: Method 1 - using limijts
0 order of growth of T(n) ___ order of growth of g(n)
m T(n)/g(n) = c>0 order of growth of T(n) ___order of growth of g(n)
oo order of growth of T(n) ___ order of growth of g(n)
Examples:
+10n VS. 2n?
en(n+1)/2 s, n?
- *log, n Vs, log.n
:: - Design and Analysis of Algorithms - Chapter 2 16
[

An Example

Let f(N) = 25N?+Nand g(N) = N2
Then lim,_,_, f(N)/g(N)=25.
So f(N) =O(N?).

. Design and Analysis of Algorithms - Chapter 2 18

Design and Analysis of Algorithms

:;;f

AnothebExample

Let f(N) = NlogN and g(N) = N*®,
Then lim

N—eo

Design and Analysis of Algorithms - Chapter 2

f(N)/g(N)= N log N / N*® =
log N/ N*.Now take the derivative of the
top and bottom to get : (1/ N)/.5N™° =2/N*
This approaches 0,50 N log N =0o(N*°).

Basic Asymptotic Efficiency classes

1 constant
log n logarithmic
n linear

nlogn nlogn
n2 quadratic
nd cubic
2" exponential
n! factorial

Design and Analysis of Algorithms - Chapter 2

Examples:

£ Matrix multiplication

& Selection sort

& Insertion sort

& Mystery Algorithm

Design and Analysis of Algorithms - Chapter 2

Chapter 2

Establishifig rate of growth: Method 2 — using definition |

& f(n) is O(g(n)) if order of growth of f(n) <order of growth
of g(n) (within constant multiple)

& There exist positive constant ¢ and non-negative integer n,
such that

f(n) <c g(n) for every n>n,
Examples:

Q 10n is O2n?)

Q 5n+20 is O(10n)

= Design and Analysis of Algorithms - Chapter 2 20

v

Time effiziency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

& Decide on parameter n indicating input size

& Identify algorithm’s basic operation

& Determine worst, average, and best case for input of size n

&Q Setup ion for C(n) refl algorithm’s loop structure

& Simplify summation using standard formulas (see Appendix A)

. Design and Analysis of Algorithms - Chapter 2 22

Matrix multipliacation

L
I ¥ i
238
L |

Algorithm MatreeMultiplicatton{A[0.n 1,0.n 1], Bl.n 1,0.n 1])
//Multiplies two square matrices of arder n by the definition-based algorithm
JfInput: Two r-by-n matrices A and B
J/Output: Matrie ©C AB
fori—0Oton 1do
for jeOton 1ldo
Cli,j] + 00
fork+—0ton ldo
Cli, 7] — Cli,] + Ali, ¥] » Bl, 1]

return O

Design and Analysis of Algorithms - Chapter 2 2%

Design and Analysis of Algorithms

Selection sort

Algorithm SelectionSort(Al0.n 1))
//The algorithm sorts a given array by selection sort

//Input: An array Af0.n
/{Cutput: Array Af0.n
fori+—0ton 2do
min 1
for j+—i+1lton
if A[j] < Almin]
swap Ali] and Almin]

1] of orderable elements
1] sorted in ascending order

1 do
min <+ §

Design and Analysis of Algorithms - Chapter 2

=

Mystergpalgorithm

fori:=1ton-1do

max :=1;
forj:=i+1tondo

if |A[], i]]>|A[max, i]| then max :=j;
fork:=i ton+1do

swap A[i, k] with A[max, k];
forj:=i+1tondo

for k :=n +1 downto i do

ALl K] :=A[]. K] -A[i,k]*A[],i]/A[ii];3

Design and Analysis of Algorithms - Chapter 2

Chapter 2

Insertion sort

Algorithm InsertionSort(A[0.n 1))
//Sorts a given array by insertion sort

//Input: An array A0.»
J/Output: Array A[0.n
fori+—1lton 1ldo
v Alf]
i+t 1
while 7 > (0 and A[j] > v do
A +1) — Al
j—3i 1
Alf+1] +—wv

1] of n orderable elements
1] sorted in nondecreasing order

-

Design and Analysis of Algorithms - Chapter 2 26

R

AssideiRecall Proof by Induction

& Proof by (strong) induction:

¢ Show theorem true for trivial case(s). Then,
assuming theorem true up to case N, show true
for N+1. Thus true for all N.

Design and Analysis of Algorithms - Chapter 2

“TIL

Programming with Recursion

& Recursion is similar to a proof by induction:
¢ There must be a base (trivial) case.
¢ The recursion is assumed to hold for all k < N.
¢ The Nth case is built from the k < N cases.

Design and Analysis of Algorithms - Chapter 2 28

Proof that T(N) >=F(N)

Basecases:T(0) = 1 > F(0) = 1,
T1)=12FQ1) =1
T(2) =42 F(2) =2
We know that T(N +1) >T(N)+T(N -1)
and F(N +1) =F(N)+F(N -1).
Assume theorem holds for allk,1<k <N
Now prove for the N +1 case:
TIN+1)>T(N)+T(N-1)> F(N) + F(N-1)=F(N +1)

Design and Analysis of Algorithms - Chapter 2 30

Design and Analysis of Algorithms

Proof titat F(N) >= (3/2)N

Basecases: F(5) = 8 > (3/2)° = 7.6,

F(6) = 13 = (3/2)° = 114.
Assume theorem holds for allk,1<k < N.
Now prove for the N +1case:
F(N+1) =F(N) + F(N-1)>(3/2)" +(3/2)" ' =
(3/2)" (1+(2/3))=(3/2)" (5/3)>
(3/2)N (312)=(3/2)N*.

v

:iif

Design and Analysis of Algorithms - Chapter 2 31

Steps in mathematical analysis of recursive algorithms:

& Decide on parameter n indicating input size

& Identify algorithm’s basic operation

& Determine worst, average, and best case for input of size n

& Set up a recurrence relation and initial condition(s) for C(n)-the
number of times the basic operation will be executed for an input of size
n (alternatively count recursive calls).

& Solve the recurrence to obtain a closed form or estimate the order of
magnitude of the solution (see Appendix B)
Design and Analysis of Algorithms - Chapter 2 3

Agenerél divide-and-conquer recurrence

T(n) =aT(n/b) + f (n) where f (N) € O(nX)

1. a<bk T(n) e O(NY)
2. a=hk T(n) e O(NXIgn)
3. a>hk T(n) € O(nlogs2a)

Note: the same results hold with O instead of ©.

Design and Analysis of Algorithms - Chapter 2 35

Chapter 2

Back tqﬁecursion:

& Definition: n ! = 1*2*...*(n-1)*n
& Recursive definition of n!:

& Algorithm:
if n=0 then F(n) :=1
else F(n) := F(n-1) * n
return F(n)

& Recurrence for number of multiplications to compute n!:

Design and Analysis of Algorithms - Chapter 2

Important recurrence types:

& One (constant) operation reduces problem size by one.
T()=TM-1)+¢ T()=d
Solution: T(n)= (n-1)c+d linear

& A pass through input reduces problem size by one.
T(n) =T(n-1) +cn T(1)=d

Solution: T(n) = [n(n+1)/2-1]c+d guadratic

& One (constant) operation reduces problem size by half.
T()=T(M/2) +¢ T(1)=d

Solution: T(n)= clgn+d logarithmic

& A pass through input reduces problem size by half.
T(n) = 2T(n/2) +cn T(1)=d

Solution: T(N)= cnlgn+dn nlogn

Design and Analysis of Algorithms - Chapter 2

Math Review: Exponents

XAXB = XA'B (not XAB 11)
XA | XB = XAB

(XA)B = XAB

XA + XA = 2XA

DA 4 DA = DA+1

Design and Analysis of Algorithms - Chapter 2

Design and Analysis of Algorithms Chapter 2

Logarithms..

& Theorem: log,B = log.B / log-A
Proof: Let X = logcB, Y = logcA, and Z = log,B. By
the definition of logarithm: CX =B, CY = A, and
AZ=B.
Thus CX=B=AZ =CYZ,X=YZ, Z=X/V.

Logarithms

@ Definition: XA =B if and only if logyB = A (X is
the “base” of the logarithm).
* Example: 10> =100 means log;,100 =2.

& Theorems
logyAB = logyA + logyB
logyA/B = logyA — logyB
logy AB=B log,A

:'l’ Mo
.I - Design and Analysis of Algorithms - Chapter 2 37 .-> Design and Analysis of Algorithms - Chapter 2 38
' n
Logaritbms... o Series©
& The notation for logs can be confusing. There are
two alternatives: NON(N4D)
* log?(x) = log (log x) or S= Z' i e—
« log?(x) = (log x)? = 2
9 9 & Proof by Gauss when 9 years old (?!):

& Generally, we use the 2 definition.

& Note: log?(x) is not (log x2)

& Note: log is not a multiplicative entity, it is a S=1+2+3+..+(N-2)+(N -1)+N
function. S=N+(N-1)+(N-2)+..+3+2+1

M o2s = N (N +1)

n
- oy
s Design and Analysis of Algorithms - Chapter 2 39 - Design and Analysis of Algorithms - Chapter 2 w0

Finite Series Finite Series

A
rry 4
. N k+1
S= Z:|k =~
Py [k+1|
& Proof:
N, N(N+D)@2N +1 Nk N Xt
S:lezi()) it = [xtdx= N
i1 6 i-1 1 k+1
3k N k+1 1
x Tk+l k+1
1k
1 2 3 4.... N N+1
L L
- .
- Design and Analysis of Algorithms - Chapter 2 4 - Design and Analysis of Algorithms - Chapter 2 42
| |

:iif

Design and Analysis of Algorithms

Finite Series

N AN+1_1 N .
S= A|= S= 2|=2N+l_1
2K an 2

Proof:

I+ A+ A+ .+ AV)(A-1) =
A+ A+ 4+ AN 1 A-AT - AV =AM]

Design and Analysis of Algorithms - Chapter 2 43

GenerabRules for Sums

Zn:c=czn:1:c(n—m+1)
Z(ai +bi)=Zai +Zbi
anichai

n+k

n
Z Ay = z g
1=m

i=m+k

:E:a1xhk — Xk:E:aiX

i Design and Analysis of Alfjorithms - Chapter 2 45

Chapter 2

Finite Series

(A+ A’ +..+ AV)(A-1) =
AP+ AN A-AT— AN =AM A

Design and Analysis of Algorithms - Chapter 2

