
1

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 1

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

Analysis of Algorithms

Dr. Steve Goddard
goddard@cse.unl.edu

CSCE 310J: Data Structures & Algorithms

Design and Analysis of Algorithms - Chapter 2 2

Giving credit where credit is due:
• Most of the lecture notes are based on the slides from

the Textbook’s companion website
– http://www.aw.com/cssuport/

• Several slides are from William Spears of the University
of Wyoming

• I have modified them and added new slides

CSCE 310J: Data Structures & Algorithms

Design and Analysis of Algorithms - Chapter 2 3

Analysis of Algorithms

Issues:
• Correctness
• Time efficiency
• Space efficiency
• Optimality

Approaches:
• Theoretical analysis
• Empirical analysis

Design and Analysis of Algorithms - Chapter 2 4

Theoretical analysis of time efficiency
Time efficiency is analyzed by determining the number of

repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most
towards the running time of the algorithm.

T(n) ≈ copC(n)
running time execution time

for basic operation
Number of times
basic operation is

executed

input size

Design and Analysis of Algorithms - Chapter 2 5

Input size and basic operation examples

Basic operationInput size measureProblem

Visiting a vertex or
traversing an edge#vertices and/or edgesGraph problem

Floating point
multiplicationnCompute an

Floating point
multiplicationDimensions of matricesMultiply two matrices of

floating point numbers

Key comparisonNumber of items in list nSearch for key in list of n
items

Design and Analysis of Algorithms - Chapter 2 6

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)

OR

Count actual number of basic operations

Analyze the empirical data

2

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 7

Best-case, average-case, worst-case

For some algorithms efficiency depends on type of input:

Worst case: W(n) – maximum over inputs of size n

Best case: B(n) – minimum over inputs of size n

Average case: A(n) – “average” over inputs of size n
• Number of times the basic operation will be executed on typical input
• NOT the average of worst and best case
• Expected number of basic operations repetitions considered as a

random variable under some assumption about the probability
distribution of all possible inputs of size n

Design and Analysis of Algorithms - Chapter 2 8

Example: Sequential search

Problem: Given a list of n elements and a search key K, find
an element equal to K, if any.
Algorithm: Scan the list and compare its successive
elements with K until either a matching element is found
(successful search) of the list is exhausted (unsuccessful
search)
Worst case

Best case

Average case

Design and Analysis of Algorithms - Chapter 2 9

Types of formulas for basic operation count

Exact formula
e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific
multiplicative constant

e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) ≈ cn2

Design and Analysis of Algorithms - Chapter 2 10

Order of growth

Most important: Order of growth within a constant multiple
as n→∞

Example:
• How much faster will algorithm run on computer that is twice as fast?

• How much longer does it take to solve problem of double input size?

See table 2.1

Design and Analysis of Algorithms - Chapter 2 11

Table 2.1

Design and Analysis of Algorithms - Chapter 2 12

Asymptotic growth rate

A way of comparing functions that ignores constant factors
and small input sizes

O(g(n)): class of functions f(n) that grow no faster than g(n)

Θ (g(n)): class of functions f(n) that grow at same rate as g(n)

Ω(g(n)): class of functions f(n) that grow at least as fast as g(n)

see figures 2.1, 2.2, 2.3

3

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 13

Big-oh

Design and Analysis of Algorithms - Chapter 2 14

Big-omega

Design and Analysis of Algorithms - Chapter 2 15

Big-theta

Design and Analysis of Algorithms - Chapter 2 16

Establishing rate of growth: Method 1 – using limits

limn→∞ T(n)/g(n) =

0 order of growth of T(n) ___ order of growth of g(n)

c>0 order of growth of T(n) ___ order of growth of g(n)

∞ order of growth of T(n) ___ order of growth of g(n)

Examples:
• 10n vs. 2n2

• n(n+1)/2 vs. n2

• logb n vs. logc n

Design and Analysis of Algorithms - Chapter 2 17

L’Hôpital’s rule

If
limn→∞ f(n) = limn→∞ g(n) = ∞

The derivatives f´, g´ exist,

Then

f(n)
g(n)

lim
n→∞

=
f ´(n)
g ´(n)

lim
n→∞

Design and Analysis of Algorithms - Chapter 2 18

An Example

. So

25limThen
. and 25Let

2

22

)(Nf(N)

.f(N)/g(N)
 Ng(N) NN f(N)

N

Θ=

=
=+=

∞→

4

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 19

Another Example

. log so 0, approaches This
/25./)/1(:get tobottom and top

 theof derivative the takeNow /log

/loglimThen
. and logLet

5.1

5.5.

5.

5.1

5.1

)o(NN N
NNN

.NN

NNNf(N)/g(N)
 Ng(N) N Nf(N)

N

=
=

==

==

−

∞→

Design and Analysis of Algorithms - Chapter 2 20

Establishing rate of growth: Method 2 – using definition

f(n) is O(g(n)) if order of growth of f(n) ≤ order of growth
of g(n) (within constant multiple)
There exist positive constant c and non-negative integer n0
such that

f(n) ≤ c g(n) for every n ≥ n0

Examples:
10n is O(2n2)

5n+20 is O(10n)

Design and Analysis of Algorithms - Chapter 2 21

Basic Asymptotic Efficiency classes

factorialn!

exponential2n

cubicn3

quadraticn2

n log nn log n

linearn

logarithmiclog n

constant1

Design and Analysis of Algorithms - Chapter 2 22

Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up summation for C(n) reflecting algorithm’s loop structure

Simplify summation using standard formulas (see Appendix A)

Design and Analysis of Algorithms - Chapter 2 23

Examples:

Matrix multiplication

Selection sort

Insertion sort

Mystery Algorithm

Design and Analysis of Algorithms - Chapter 2 24

Matrix multipliacation

5

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 25

Selection sort

Design and Analysis of Algorithms - Chapter 2 26

Insertion sort

Design and Analysis of Algorithms - Chapter 2 27

Mystery algorithm

for i := 1 to n - 1 do
max := i ;
for j := i + 1 to n do

if |A[j, i]| > |A[max, i]| then max := j ;
for k := i to n + 1 do

swap A[i, k] with A[max, k];
for j := i + 1 to n do

for k := n + 1 downto i do
A[j, k] := A[j, k] - A[i, k] * A[j, i] / A[i, i] ;

Design and Analysis of Algorithms - Chapter 2 28

Programming with Recursion

Recursion is similar to a proof by induction:
• There must be a base (trivial) case.
• The recursion is assumed to hold for all k < N.
• The Nth case is built from the k < N cases.

Design and Analysis of Algorithms - Chapter 2 29

Asside: Recall Proof by Induction

Proof by (strong) induction:
• Show theorem true for trivial case(s). Then,

assuming theorem true up to case N, show true
for N+1. Thus true for all N.

Design and Analysis of Algorithms - Chapter 2 30

Proof that T(N) >= F(N)

)1(1)1()()1(
:case1 for the prove Now

1 , allfor holds theoremAssume
).1()()1(and

)1()()1(that know We
2242

1111
1010 :cases Base

+=+≥−+>+
+

≤≤
−+=+

−+>+
=≥=

=≥=
=≥=

NF) F(N- F(N) NTNTNT
 N

Nkk
NFNFNF

NTNTNT
.) F() T(

.) F() T(
,) F() T(

6

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 31

Proof that F(N) >= (3/2)N

.)2/3((3/2))2/3(
 (5/3))2/3((2/3))(1)2/3(

)2/3()2/3(11
:case 1 for the prove Now

.1 , allfor holds theoremAssume
4.11)2/3(136(

6.7)2/3(85 :cases Base

1

1

6

5

+

−

=
>=+

=+≥+=+
+

≤≤
=≥=
=≥=

NN

NN

NN) F(N-F(N)) F(N
N

Nkk
.) F

,) F(

Design and Analysis of Algorithms - Chapter 2 32

Back to Recursion:
Example Recursive evaluation of n !

Definition: n ! = 1*2*…*(n-1)*n

Recursive definition of n!:

Algorithm:
if n=0 then F(n) := 1

else F(n) := F(n-1) * n
return F(n)

Recurrence for number of multiplications to compute n!:

Design and Analysis of Algorithms - Chapter 2 33

Time efficiency of recursive algorithms
Steps in mathematical analysis of recursive algorithms:

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best case for input of size n

Set up a recurrence relation and initial condition(s) for C(n)-the
number of times the basic operation will be executed for an input of size
n (alternatively count recursive calls).

Solve the recurrence to obtain a closed form or estimate the order of
magnitude of the solution (see Appendix B)

Design and Analysis of Algorithms - Chapter 2 34

Important recurrence types:
One (constant) operation reduces problem size by one.

T(n) = T(n-1) + c T(1) = d
Solution: T(n) = (n-1)c + d linear

A pass through input reduces problem size by one.
T(n) = T(n-1) + cn T(1) = d
Solution: T(n) = [n(n+1)/2 – 1] c + d quadratic

One (constant) operation reduces problem size by half.
T(n) = T(n/2) + c T(1) = d
Solution: T(n) = c lg n + d logarithmic

A pass through input reduces problem size by half.
T(n) = 2T(n/2) + cn T(1) = d
Solution: T(n) = cn lg n + d n n log n

Design and Analysis of Algorithms - Chapter 2 35

A general divide-and-conquer recurrence

T(n) = aT(n/b) + f (n) where f (n) ∈ Θ(nk)

1. a < bk T(n) ∈ Θ(nk)
2. a = bk T(n) ∈ Θ(nk lg n)
3. a > bk T(n) ∈ Θ(nlog b a)

Note: the same results hold with O instead of Θ.

Design and Analysis of Algorithms - Chapter 2 36

Math Review: Exponents

XA XB = XA+B (not XAB !!)
XA / XB = XA-B

(XA)B = XAB

XA + XA = 2XA

2A + 2A = 2A+1

7

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 37

Logarithms

Definition: XA = B if and only if logXB = A (x is
the “base” of the logarithm).
• Example: 102 = 100 means log10100 = 2.

Theorems
logXAB = logXA + logXB
logXA/B = logXA – logXB
logX AB = B logXA

Design and Analysis of Algorithms - Chapter 2 38

Logarithms…

Theorem: logAB = logCB / logCA
Proof: Let X = logCB, Y = logCA, and Z = logAB. By

the definition of logarithm: CX = B, CY = A, and
AZ = B.

Thus CX = B = AZ = CYZ , X = YZ, Z = X/Y.

Design and Analysis of Algorithms - Chapter 2 39

Logarithms…

The notation for logs can be confusing. There are
two alternatives:
• log2(x) = log (log x) or
• log2(x) = (log x)2

Generally, we use the 2nd definition.
Note: log2(x) is not (log x2)
Note: log is not a multiplicative entity, it is a
function.

Design and Analysis of Algorithms - Chapter 2 40

Series

Proof by Gauss when 9 years old (?!):
2

)1(
1

+==∑
=

NNiS
N

i

)1(2

123...)2()1(
)1()2(...321

+=
−−−−−−−−−−−−−−−−−−−−−−−

++++−+−+=
+−+−++++=

NNS

NNNS
NNNS

Design and Analysis of Algorithms - Chapter 2 41

Finite Series

6
)12)(1(

1

2 ++==∑
=

NNNiS
N

i

Design and Analysis of Algorithms - Chapter 2 42

Finite Series

Proof:

∑
=

+

+
≈=

N

i

k
k

k
NiS

1

1

|1|

1 2 3 4 …… N N+1
1k
2k
3k

Nk

1
1

1

1
1

1

1

1 1

|

+
−

+
=

+
=≈

+

+

=
∑ ∫

kk
N

k
xdxxi

k

N
kN

i

N
kk

8

Design and Analysis of Algorithms Chapter 2

Design and Analysis of Algorithms - Chapter 2 43

Finite Series

Proof:
1

11

0 −
−==

+

=
∑ A

AAS
NN

i

i

1...1...
)1)(...1(

1212

2

−=−−−−−+++
=−++++

++ NNN

N

AAAAAAA
AAAA

122 1

0

−== +

=
∑ N

N

i

iS

Design and Analysis of Algorithms - Chapter 2 44

Finite Series

Proof:
1

1

1 −
−==

+

=
∑ A

AAAS
NN

i

i

AAAAAAA
AAAA

NNN

N

−=−−−−++
=−+++

++ 1212

2

......
)1)(...(

222 1

1

−== +

=
∑ N

N

i

iS

Design and Analysis of Algorithms - Chapter 2 45

General Rules for Sums

i

i
i

kki

i
i

kn

kmi
i

n

mi
ki

i
i

i
i

i
i

i
ii

i
i

n

mi

n

mi

xaxxa

aa

acca

baba

mnccc

∑∑

∑∑

∑∑

∑∑∑

∑∑

=

=

=

+=+

+−==

+

+

+==
+

==

)(

)1(1

