CSCE 310J: Data Structures & Algorithms CSCE 310J: Data Structures & Algorithms

& Giving credit where credit is due:
* Most of slides for this lecture are based on slides created
Abstract Data Types by Dr. Ben Choi, Louisiana Technical University.

and Basic Data Structures < | have modified them and added new slides

Dr. Steve Goddard
goddard@cse.unl.edu

http:/lwww.cse.unl.edu/~goddard/Courses/CSCE310J

Abstraet Data Type ADT Spexification

Abstract Data Type & The specification of an ADT describes how the
a yp) operations (functions, procedures, or methods) behave
« Data SFructure declaration in terms of Inputs and Outputs
* Operations performed on the data structure & A specification of an operation consists of:
- e.g., create, destroy, or manipulate « Calling prototype
— These are logical operations that are independent of the actual -
< Preconditions

implementation! Postconditi
. - - . - . ostconaitions
& Provides data encapsulation (information hiding) 5 The calling prototype includes

& An ADT is implemented as a Class in languages such as « name of the operation
C++and Java « parameters and their types
& Algorithms can be designed, specified, and proven correct * return value and its types
using the logical properties of ADTs & The preconditions are statements
M 5 Performance analysis depends on the implementation! n + assumed to be true when the operation is called.
::: , :: & The postconditions are statements)
| s « assumed to be true when the operation returns.

Operations for ADT , More o@ADTs

& Constructors
« create a new object and return a reference to it
& Access functions
« return information about an object, but do not modify it

& State of an object
« current value of its data

£ Some books claim that constructors and manipulation
procedures should be described in terms of Access

& Manipulation procedures functions
« modify an object, but do not return information * Maybe...
& Destructors & Recursive ADT
* deallocate an object « if any of its access functions returns the same class as the ADT
E L
i g
i : s :

Page 1

ADT Design for Lists

IntList nil //constant denoting the empty list.

IntList constructList(int newElement, IntList oldList)
Precondition: None.
Postconditions: If newL.ist = constructList(newElement, oldL ist)

then

1. newL.ist refers to a newly created list object;

2. newL.ist # nil;

3. first(newL.ist) = newElement;

4. rest(newL.ist) = oldList

IntList rest(IntList aList) // access fcn
int first(IntList aList) // access function precondition: aList # nil
Precondition: aList # nil
Postcondition: if element = first(aList) then
1. element = nil

Binary Tree Example o
Irm
Ty
2 What node is the root? & What is the value of n?
2 What is the depth of each node? Q What is the height of the tree?
+ How many nodes are there at

& What is the minimum

that depth? N . .
« Is this the maximum number of (maxn_num)_helght of a binary
nodes at that depth? tree with this many nodes?
£ How many internal nodes? £ What is the height of each
. How many leaves? subtree?

£ What are the preorder,
inorder, and postorder
traversals?

& A queue is a linear structure in which
« allinsertions are done at one end, called the rear or back, and
« all deletions are done at the other end, called the front.

& This updating policy is called first in, first out (FIFO).

Binary Tree

£ Abinary tree T is a set of elements, called nodes,
that is empty or satisfies:
1. There is a distinguished node r called the root
2. The remaining nodes are divided into two disjoint subsets, L and R,
each of which is a binary tree.
— L is called the left subtree of T and R is called the right subtree of T.

& There are at most 29 nodes at depth d of a binary tree.

& Abinary tree with n nodes has height at least
Ceiling[lg(n+1)] - 1.

& A binary tree with height h has at most 21 -1 nodes

StacksO

& Astack is a linear structure in which insertions and
deletions are always made at one end, called the top.

& This updating policy is called last in, first out (LIFO).

& Operations:

Stack create()

boolean isEmpty(Stack s)

Object top(Stack s),

void push(Stack s, Object e),

void pop(Stack s)

« element order is related to each element’s priority, rather than its
chronological arrival time.
& “As each element is inserted into a priority queue,
conceptually it is inserted in order of its priority.”
&£ The one element that can be inspected and removed is the
most important element currently in the priority queue.
« acost viewpoint: the smallest priority
« a profit viewpoint: the largest priority
& Priority queue operations are not in @(1). Their complexity
varies depending on the implementation, as we shall see.

Page 2

Set: firs3ome basics..

& A setis a collection of distinct elements.

& The elements are of the same “type”

& “element e is a member of set S” is denoted ase e S

& Read “eisin S”

&£ A particular set is defined by listing or describing its
elements between a pair of curly braces:
S, ={a, b, c}, S, = {x| xis an integer power of 2}
read “the set of all elements x such that x is ...”

& S;={} =9, has no elements, called empty set

& A set has no inherent order.

Sequenee

A

& A group of elements in a specified order is called a
sequence.

& A sequence can have repeated elements.

& Sequences are defined by listing or describing their
elements in order, enclosed in parentheses.

« eg.S1=(a b,c),S2=(b,c,a),S3=(a ab,c)

&£ A sequence is finite if there is an integer n such that the
elements of the sequence can be placed in a one-to-one
correspondence with (1, 2, 3, ..., n).

& If all the elements of a finite sequence are distinct, that
sequence is said to be a permutation of the finite set
consisting of the same elements.

& One set of n elements has n! distinct permutations.

|

SubsetgSuperset; Intersection, Union

|

& If all elements of one set, S; are also in another
set, S,,
& Then S, is said to be a subset of S,, S, = S, and
S, is said to be a superset of S;, S, 2 S;.
& Empty set is a subset of every set, < S
& Intersection
SNT={x|xe Sandxe T}
& Union
SuT={x|xeSorxe T}

Tuples@nd Cross Product

&£ Atuple is a finite sequence.

« Ordered pair (x, y), triple (x,y, z),

quadruple, and quintuple

« Ak-tuple is a tuple of k elements.

& The cross product of two sets, say Sand T, is
SxT={(xy)|xeS,ye T}

QISxT|=[8]T|
& It often happens that S and T are the same set,

« eg.NxN
where N denotes the set of natural numbers, {0,1,2,...}

Page 3

Cardinality

& Aset, S, is finite if there is an integer n such that the
elements of S can be placed in a one-to-one
correspondence with {1, 2,3, ..., n}

« in this case we write |S| = n

&£ How many distinct subsets does a finite set on n
elements have?

« There are 2" subsets.

& How many distinct subsets of cardinality k does a finite
set of n elements have?

« There are C(n, k) = n!/((n-k)'k!), “n choose k™

>

IS

Relations and Functions

L

A relation is some subset of a (possibly iterated) cross product.
A binary relation is some subset of a simple cross product, e.g. R Sx T
« The “less than” relation can be defined as {(x, y) [xe N,y e N, x<y}
Important properties of relations; let R g Sx S
reflexive: forallxe S, (x,x) € R.
symmetric: if (x, y) € R, then (y, X) € R.
antisymmetric: if (x, y) € R, then (y, x) ¢ R
transitive: if (x,y) € Rand (y, z) € R, then (x, 2) € R.
A relation that is reflexive, symmetric, and transitive is called an
equivalence relation,
« l.e., partitions the underlying set S into equivalence classes S,,S,,... s.t.
elements with in S, are equivalent to each other.
A function is a relation in which no element of S (of S x T) is repeated
with the relation. (informal def.)

Union-Rind ADT for Disjoint Sets

&£ Through a Union operation, two (disjoint) sets can be
combined.
« (to insure the disjoint property of all existing sets, the original two
sets are removed and the new set is added)
« Let the set ids of the original two sets be,sand t, s #t
¢ Then, the new set has a unique set id that is neither s nor t.

& Through a Find operation, the current set id of an element
can be retrieved.

& Often elements are integers and the set id is some
particular element in the set, called the leader, as in the
example in the book

v

Dictionary ADT

& Adictionary is a general associative storage structure.
& Items in a dictionary

« have an identifier, and

« associated information that needs to be stored and retrieved.

& No order is implied for identifiers in a dictionary ADT

& The Dictionary ADT is useful in dynamic
programming, which is covered later in the semester.

21

-::

'J,

Union-Rind ADT Example

Notice how this ADT differs from the book!
& unionFind create(int n)
« [l create a set of n singleton disjoint sets {{1},{2}.{3},....{n}}
& setld find(UnionFind sets, int element)
« [l return the set id for element
& void makeSet(unionFind sets, int element)
« //union one singleton set {e} (e not already in the sets)
/l'into exiting sets
& void union(unionFind sets, setld s, setld t)
e lls#t
« [/l anew set is created by union of set [s] and set [t]
« [/ the new set id is either s or t, in some cases min(s, t)

Page 4

