
Page 1

1

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

Abstract Data Types
and Basic Data Structures

Dr. Steve Goddard
goddard@cse.unl.edu

CSCE 310J: Data Structures & Algorithms

2

Giving credit where credit is due:
• Most of slides for this lecture are based on slides created

by Dr. Ben Choi, Louisiana Technical University.
• I have modified them and added new slides

CSCE 310J: Data Structures & Algorithms

3

Abstract Data Type

Abstract Data Type
• Data Structure declaration
• Operations performed on the data structure

– e.g., create, destroy, or manipulate
– These are logical operations that are independent of the actual

implementation!

Provides data encapsulation (information hiding)
An ADT is implemented as a Class in languages such as
C++ and Java
Algorithms can be designed, specified, and proven correct
using the logical properties of ADTs
Performance analysis depends on the implementation!

4

ADT Specification

The specification of an ADT describes how the
operations (functions, procedures, or methods) behave
in terms of Inputs and Outputs
A specification of an operation consists of:
• Calling prototype
• Preconditions
• Postconditions

The calling prototype includes
• name of the operation
• parameters and their types
• return value and its types

The preconditions are statements
• assumed to be true when the operation is called.

The postconditions are statements
• assumed to be true when the operation returns.

5

Operations for ADT

Constructors
• create a new object and return a reference to it

Access functions
• return information about an object, but do not modify it

Manipulation procedures
• modify an object, but do not return information

Destructors
• deallocate an object

6

More on ADTs

State of an object
• current value of its data

Some books claim that constructors and manipulation
procedures should be described in terms of Access
functions
• Maybe…

Recursive ADT
• if any of its access functions returns the same class as the ADT

Page 2

7

ADT Design for Lists

IntList nil //constant denoting the empty list.

IntList constructList(int newElement, IntList oldList)
Precondition: None.
Postconditions: If newList = constructList(newElement, oldList)

then
1. newList refers to a newly created list object;
2. newList ≠ nil;
3. first(newList) = newElement;
4. rest(newList) = oldList

int first(IntList aList) // access function
Precondition: aList ≠ nil
Postcondition: if element = first(aList) then

1. element ≠ nil

IntList rest(IntList aList) // access fcn
Precondition: aList ≠ nil

8

Binary Tree

A binary tree T is a set of elements, called nodes,
that is empty or satisfies:
1. There is a distinguished node r called the root
2. The remaining nodes are divided into two disjoint subsets, L and R,

each of which is a binary tree.
– L is called the left subtree of T and R is called the right subtree of T.

There are at most 2d nodes at depth d of a binary tree.
A binary tree with n nodes has height at least
Ceiling[lg(n+1)] – 1.
A binary tree with height h has at most 2h+1 –1 nodes

9

Binary Tree Example

What node is the root?
What is the depth of each node?

• How many nodes are there at
that depth?

• Is this the maximum number of
nodes at that depth?

How many internal nodes?
How many leaves?

What is the value of n?
What is the height of the tree?
What is the minimum
(maximum) height of a binary
tree with this many nodes?
What is the height of each
subtree?
What are the preorder,
inorder, and postorder
traversals?

10

Stacks

A stack is a linear structure in which insertions and
deletions are always made at one end, called the top.
This updating policy is called last in, first out (LIFO).
Operations:
• Stack create()
• boolean isEmpty(Stack s)
• Object top(Stack s),
• void push(Stack s, Object e),
• void pop(Stack s)

11

Queue

A queue is a linear structure in which
• all insertions are done at one end, called the rear or back, and
• all deletions are done at the other end, called the front.

This updating policy is called first in, first out (FIFO).

12

Priority Queue

A priority queue is similar to a FIFO queue but different…
• element order is related to each element’s priority, rather than its

chronological arrival time.

“As each element is inserted into a priority queue,
conceptually it is inserted in order of its priority.”
The one element that can be inspected and removed is the
most important element currently in the priority queue.
• a cost viewpoint: the smallest priority
• a profit viewpoint: the largest priority

Priority queue operations are not in Θ(1). Their complexity
varies depending on the implementation, as we shall see.

Page 3

13

Set: first some basics…

A set is a collection of distinct elements.
The elements are of the same “type”
“element e is a member of set S” is denoted as e ∈ S
Read “e is in S”
A particular set is defined by listing or describing its
elements between a pair of curly braces:
S1 = {a, b, c}, S2 = {x | x is an integer power of 2}
read “the set of all elements x such that x is …”
S3 = {} = ∅, has no elements, called empty set
A set has no inherent order.

14

Subset, Superset; Intersection, Union

If all elements of one set, S1, are also in another
set, S2,
Then S1 is said to be a subset of S2, S1 ⊆ S2 and
S2 is said to be a superset of S1, S2 ⊇ S1.
Empty set is a subset of every set, ∅ ⊆ S
Intersection

S ∩ T = {x | x ∈ S and x ∈ T}
Union

S ∪ T = {x | x ∈ S or x ∈ T}

15

Sequence

A group of elements in a specified order is called a
sequence.
A sequence can have repeated elements.
Sequences are defined by listing or describing their
elements in order, enclosed in parentheses.
• e.g. S1 = (a, b, c), S2 = (b, c, a), S3 = (a, a, b, c)

A sequence is finite if there is an integer n such that the
elements of the sequence can be placed in a one-to-one
correspondence with (1, 2, 3, …, n).
If all the elements of a finite sequence are distinct, that
sequence is said to be a permutation of the finite set
consisting of the same elements.
One set of n elements has n! distinct permutations.

16

Cardinality

A set, S, is finite if there is an integer n such that the
elements of S can be placed in a one-to-one
correspondence with {1, 2, 3, …, n}
• in this case we write |S| = n

How many distinct subsets does a finite set on n
elements have?
• There are 2n subsets.

How many distinct subsets of cardinality k does a finite
set of n elements have?
• There are C(n, k) = n!/((n-k)!k!), “n choose k”

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

17

Tuples and Cross Product

A tuple is a finite sequence.
• Ordered pair (x, y), triple (x, y, z),

quadruple, and quintuple
• A k-tuple is a tuple of k elements.

The cross product of two sets, say S and T, is
S × T = {(x, y) | x ∈ S, y ∈ T}
| S × T | = |S| |T|
It often happens that S and T are the same set,
• e.g. N × N

where N denotes the set of natural numbers, {0,1,2,…}

18

Relations and Functions

A relation is some subset of a (possibly iterated) cross product.
A binary relation is some subset of a simple cross product, e.g. R ⊆ S × T

• The “less than” relation can be defined as {(x, y) | x ∈ N, y ∈ N, x < y}
Important properties of relations; let R ⊆ S × S

• reflexive: for all x ∈ S, (x, x) ∈ R.
• symmetric: if (x, y) ∈ R, then (y, x) ∈ R.
• antisymmetric: if (x, y) ∈ R, then (y, x) ∉ R
• transitive: if (x,y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.
A relation that is reflexive, symmetric, and transitive is called an

equivalence relation,
• I.e., partitions the underlying set S into equivalence classes S1,S2,… s.t.

elements with in Si are equivalent to each other.
A function is a relation in which no element of S (of S x T) is repeated
with the relation. (informal def.)

Page 4

19

Union-Find ADT for Disjoint Sets
Through a Union operation, two (disjoint) sets can be
combined.
• (to insure the disjoint property of all existing sets, the original two

sets are removed and the new set is added)
• Let the set ids of the original two sets be, s and t, s ≠ t
• Then, the new set has a unique set id that is neither s nor t.

Through a Find operation, the current set id of an element
can be retrieved.

Often elements are integers and the set id is some
particular element in the set, called the leader, as in the
example in the book

20

Union-Find ADT Example

Notice how this ADT differs from the book!
unionFind create(int n)
• // create a set of n singleton disjoint sets {{1},{2},{3},…,{n}}

setId find(UnionFind sets, int element)
• // return the set id for element

void makeSet(unionFind sets, int element)
• //union one singleton set {e} (e not already in the sets)

// into exiting sets

void union(unionFind sets, setId s, setId t)
• // s ≠ t
• // a new set is created by union of set [s] and set [t]
• // the new set id is either s or t, in some cases min(s, t)

21

Dictionary ADT

A dictionary is a general associative storage structure.
Items in a dictionary
• have an identifier, and
• associated information that needs to be stored and retrieved.

No order is implied for identifiers in a dictionary ADT
The Dictionary ADT is useful in dynamic
programming, which is covered later in the semester.

