
1

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

Distributed Synchronization

Dr. Steve Goddard
goddard@cse.unl.edu

CSCE 310J
Data Structures & Algorithms

2

Coordinating processes to achieve common goal
» process precedence

» critical sections

Synchronization on centralized machines
» semaphores, monitors, etc.

all rely on shared memory

» event ordering (also used for synchronization)
just use kernel’s clock

Synchronization

3

Memory is not shared

Clock is not shared

Decisions are usually based on local information

Centralized solutions undesirable (single point of
failure, performance bottleneck)

Distributed Synchronization

4

Generally impossible to synchronize clocks
» clock skew - all crystals run at slightly different rates

not a problem for centralized systems

» ‘make’ example in book

» can periodically synchronize clocks
but how long does it take to transmit the synch message?

what if it has to be re-transmitted?

Lamport: clock synchronization does not have to be exact
» synchronization not needed if there is no interaction between

machines

» synchronization only needed when machines communicate

» i.e. must only agree on ordering of interacting events

Global Clock
Synchronization

5

Happened-before relation
» denoted by →

Partial orders
» ei and ej, are two events

» if ei and ej are in the same process

if ei → ej, then ei occurs before ej

» if ei is the transmission of a message, and ej is its
reception

then ei → ej

» transitivity holds
(ei → ej) and (ej → ek) ⇒ ei → ek

Event Ordering

6

Substitute synchronized clocks with a global
ordering of events
» LCi is a local clock: contains increasing values

each process i has own LCi

» increment LCi on each event occurrence

» ei → ej ⇒ LC(ei) < LC(ej)

» within same process i, if ej occurs before ek

LCi(ej) < LCi(ek)

» if es is a send event and er receives that send, then
LCi(es) < LCj(er)

Logical Clocks

7

Timestamp
» each event is given a timestamp t

» if es is a send message m from pi, then t = LCi(es)

» when pj receives m, set LCj value as follows
if t < LCj, increment LCj by one

message regarded as next event on j

if t ≥ LCj, set LCj to t + 1

Logical Clocks (cont.)

8

Achieves clock synchronization across processes
» all that matters is when the processes need to

synchronize - messages are required

» Two cases:
t < LCj

LCj = LCj + 1

t ≥ LCj

LCj = t + 1

Logical Clocks (cont.)

9

Physical Clocks

Must be synchronized with real world

In a distributed system, they must be synchronized
with each other as well!

Universal Coordinated Time (UTC)
» Based on International Atomic Time (TAI)

which is based on transitions of a cesium 133 atom

» Broadcast by
NIST out of Fort Collins, CO on WWV (Short Wave)

Geostationary Environment Operation Satellite(GEOS)

10

Clock Synchronization
Algorithms

Goal
» Keep all clocks as synchronized as possible

» dC/dt = 1

Reality
» Clocks drift with maximum drift rate ρ
» 1−ρ ≤ dC/dt ≤ 1+ρ
» Must synch at least every δ/2ρ time units to keep all

clocks with δ time units of each other

11

Cristian’s Algorithm

Periodically, clients ask a Time Server for the
correct time, CUTC

» Let time of
request be T0, time of reply be T1, server interrupt handling
time be I

» Cp = CUTC + (T1 - T0 -I)/2
Problem:

time cannot go backwards

slow down or speed up gradually

Improve accuracy with a series of
requests/measurements

12

Berkeley Algorithm

Time server (daemon) is active
» sends clients its time periodically

» clients send back delta

» server averages responses

» tells each client how to adjust its clock

Can be used with or without a WWV receiver

Highly centralized (as is Cristian’s algorithm)

13

Decentralized Averaging
Algorithms

Divide time into quanta

At the end of each quantum
» Each machine broadcasts its current time

» Each machine averages all of the responses and sets its
own clock accordingly

» Can discard highest and lowest m values to

Variation account for propagation delay.

14

Traditional approach
» each message has unique message id

» server maintains list of id’s

» can lose message numbers on server crash

» how long does server keep id’s?

With globally synchronized clocks
» sender assigns a timestamp to message

» server keeps most recent timestamp for each connection
reject any message with lower timestamp (is a duplicate)

» removing old timestamps
G = CurrentTime - MaxLifeTime - MaxClockSkew

timestamps older than G are removed

Using Synchronized Clocks
Implementing at-most-once semantics

15

After a server crash
» CurrentTime is recomputed

using global synchronization of time

» all messages older than G are rejected

» meaning all messages before crash are rejected as
duplicate

some new messages may be wrongfully rejected

but at-most-once semantics is guaranteed

At-Most-Once Semantics
(cont.)

16

Problem if two simultaneously update
» solution: distinguish between caching for read or write

readers must invalidate cache if writer is present

server must verify that all readers have invalidated their cache

even if cache is very old

Clock-based cache consistency
» clients given a “lease”

specifies how long cache is valid

clients can renew leases without re-caching

» server invalidates caches whose leases have not expired
if there is a client crash, just wait for lease to expire

» global clock ensures agreement of lease time
even in the face of crashes

Using Synchronized Clocks
Cache Consistency

17

Centralized mutex
» choose a coordinator

all critical region (CR) requests go to coordinator

coordinator grants or denies permission

Request/reply model
» p1 requests, CR is available

coordinator sends a reply

reply indicates permission to enter CR

» queue subsequent requests
do not send a reply

» when p1 finished, send a reply to first in queue

Mutual Exclusion in
Distributed Systems

18

Request/grant or deny model
» send ‘permission denied’ when CR is busy

» two possibilities
send ‘grant’ message when process given CR

let requesting process decide what to do - polling

Problems with centralized approach
» single point of failure, bottleneck (the usual...)

Distributed algorithm (Lamport)
» use logical clocks to achieve mutual exclusion

» each process has a request queue

» decisions made locally, global exclusion maintained

Mutual Exclusion (cont.)

19

Suppose Pi wants access to critical region
» Pi sends message with Tm to every process

» Pj receives message, places it on request queue, sends
ack with Tr

» Pi gets resource when:
1) Tm in Pi’s request queue < all other time stamps

2) Pi receives ack messages from all other processes
timestamped later than Tm

note that control is local to Pi

» when i finished with CR
Pi removes Tm from message queue, sends timestamped “Pi

releases resource” message

Pj’s receiving the message remove Tm’s from queue

Lamport’s Distributed Mutex
Alg. Using Logical Clocks

20

Lamport’s Algorithm
(example) Pi Pj

request (i5) queue(j10)

ack(12)

queue(i5)

Pi in
critical
section

queue(i5, j10)
queue(j10, i5)

request (j10)

release(i5)
queue(j10)

queue(j10)

Pj enters
critical
section

ack(12)

4 9

11 11

14

12

13

12

13

15

21

Lamport’s algorithm
» requires 3(N-1) messages per critical section request

broadcast mediums reduce to 3 messages

Ricart and Agrawala’s algorithm
» requires only a request and reply message

» (no release required)

» therefore 2(N-1) messages per CS request

Ricart and Agrawala

22

When receiving a request from process Pi:
» receiver is not in and does not want CR

send OK to Pi

» receiver already in CR
queue the request

» receiver wants CR, but has not been granted
if timestamp > Pi’s, send OK to Pi

otherwise, queue request

When finished with CR, process sends OK to all
processes in queue

Pi enters critical section after receiving OK replies
from all other processes in group

Richart and Agrawala’s
Algorithm

23

request(i8)
request(k12)

OK(j)OK(j)

OK(k)

i in CR

OK(i)

k in CR

I J K

Richart and Agrawala
Example

24
request(i7) request(k9)

OK(k)
OK(j)

OK(k)

i in CR

OK(i)

k in CR
I J K

request(j8)

q(j8)
q(j8, k9) q(k9)

j in CR

OK(i)

Richart and Agrawala
Example

25

No single point of failure
» each process makes independent decisions

» But what if one process doesn’t send an OK?
a form of deadlock

» now there are n points of failure

Group communication is needed
» must maintain a list of group members

» either each process...

» or use primitives discussed in Chapter 2

All processes are involved in all decisions
» increases the overall system load

Problems with Both
Algorithms

26

General structure
» one token per CR

» only process with token allowed in CR

» token passed from process to process
logical ring

Mutex
» pass token to process i + 1 mod N

» received token gives permission to enter CR
hold token while in CR

» must pass token after exiting CR

» fairness ensured: each process waits at most n-1 entries to
get CR

Token Passing Mutex

27

Difficulties with token passing mutex
» lost tokens: electing a new token generator

» duplicate tokens: ensure by not generating more than one
token

Token Passing Mutex

28

Centralized

» simplest, most efficient

» centralized coordinator crashes
need to choose a new coordinator

Distributed

» 2(n-1) messages per entry/exit (Ricart & Agrawala)

» if any process crashes with a non-empty queue,
algorithm won’t work

Token Ring

» if there are lots of CR requests, between 0 and
unbounded # of messages per entry/request

if CR requests rare, unbounded number of messages

» need methods for re-generating a lost token

Mutex Comparison

29

Centralized approaches often necessary
» best choice in mutex, for example

» but need method of electing a new coordinator when it
fails

General assumptions
» give processes unique system/global numbers

» elect (live) process with highest process number

» processes know process number of members

» all processes agree on new coordinator

Election Algorithms

30

Suppose the coordinator doesn’t respond to p1’s
request
» p1 holds an election by sending an election message to all

processes with higher numbers

» if p1 receives no responses, p1 is the new coordinator

» if any higher numbered process responds, p1 ends its election

If a process with a higher number receives an election
request
» reply to the sender

to tell sender that it has lost the election

» hold an election of its own

» eventually all give up but highest surviving process

The Bully Algorithm

31

Example: processes 0-7, 4 detects that 7 has
crashed

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

32

Example: process 4 holds an election

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

Election

Election

Election

33

Example: processes 5 and 6 respond with OK

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

OK

OK

34

Example: Processes 5 and 6 hold elections

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

Election

Election

Election

35

Example: process 6 sends OK

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

OK

36

Example: process 6 is the new Coordinator

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

Coordinator

Coordinator

37

Processes are ordered
» each process knows its successor

» no token involved

Any process noticing that the coordinator is not responding
» sends an election message to its successor

if successor is down, send to next member

therefore each process has full knowledge of the ring

» receiving process adds its number to the message and passes it
along

When message gets back to election initiator
» change message to coordinator

» circulate to all members
note that members now have complete (and ordered) list of members

» coordinator is highest process number

Ring Algorithm

38

What if more than one process detects a crashed
coordinator?
» more than one election will be produced

» all messages will contain the same information
member process numbers

order of members

» same coordinator is chosen (highest number)

Ring Algorithm (cont.)

