CSCE 310J
Data Structures & Algorithms

Distributed Synchronization

Dr. Steve Goddard
goddard@cse.unl.edu

http:/iwww.cse.unl.edu/~goddard/Courses/CSCE310J

Synchronization

+ Coordinating processes to achieve common goal
» process precedence
» critical sections
« Synchronization on centralized machines
» semaphores, monitors, etc.
< all rely on shared memory
» event ordering (al so used for synchronization)
% just use kernel's clock

Distributed Synchronization

¢ Memory is not shared
Clock is not shared
Decisions are usually based on loca information

+ Centralized solutions undesirable (single point of
failure, performance bottleneck)

Glabal Clock
Synchronization

& Generally impossible to synchronize clocks
» clock skew - al crystalsrun at slightly different rates
< not aproblem for centralized systems
» ‘make’ examplein book
» can periodically synchronize clocks
< but how long does it take to transmit the synch message?
+ what if it has to be re-transmitted?

& Lamport: clock synchronization does not have to be exact

» synchronization not needed if there is no interaction between
machines

» synchronization only needed when machines communicate
» i.e. must only agree on ordering of interacting events

Event Ordering

+ Happened-before relation
» denoted by —
+ Partial orders
» g and g, aretwo events
» if g and g arein the same process
+if & — g, then g occursbefore g
» if g isthe transmission of amessage, and g isits
reception
+theng — §
» trangtivity holds
+(g—> gad(g— a)=>6— &

Logical Clocks

< Substitute synchronized clocks with a global
ordering of events

» LC; isalocal clock: containsincreasing values
« each processi hasown LC;

» increment LC; on each event occurrence

» 6 §=LC(e) <LC(g)

» within same processi, if € occurs before g,
+LCi(g) <LCi(ay

» if g isasend event and e, receives that send, then
= LCi(e) < LCJ-(er)

L ogical Clocks (cont.)

& Timestamp
» each event is given atimestamp t
» if e isasend message m from p;, then t = LCi(e)

» when o] receives m, set LG value asfollows
wift< LCI, increment Lq by one
+ message regarded as next event on
< iftqu, setLCl tot+1

Logical Clocks (cont.)

& Achieves clock synchronization across processes
» all that matters is when the processes need to
synchronize - messages are required
» Two cases:
et< Lq
¢LG=LC+1
%tqu
eLC=t+1

Physical Clocks

& Must be synchronized with real world

« In adistributed system, they must be synchronized
with each other as well!

Universal Coordinated Time (UTC)
» Based on International Atomic Time (TAI)
« which is based on transitions of a cesium 133 atom
» Broadcast by
% NIST out of Fort Collins, CO on WWV (Short Wave)
<+ Geogtationary Environment Operation Satellite(GEOS)

Clock Synchronization

Algorithms
& Goal
» Keep al clocks as synchronized as possible
» dC/dt =1
¢ Redlity

» Clocks drift with maximum drift rate p

» 1-p < dC/dt < 1+p

» Must synch at least every 8/2p time unitsto keep all
clocks with & time units of each other

Cristian’s Algorithm

< Periodically, clients ask a Time Server for the
correct time, Cyrc
» Let time of

+ request be T, time of reply be T,, server interrupt handling
timebe|

» Cy=Cyre + (Ty- To-)/2
« Problem:
« time cannot go backwards
+ slow down or speed up gradually
& Improve accuracy with a series of
requests/measurements

Berkeley Algorithm

& Time server (daemon) is active
» sends clientsits time periodically
» clients send back delta
» SErver averages responses
» tellseach client how to adjust its clock
¢ Can be used with or without a WWV receiver

« Highly centralized (asis Cristian’s algorithm)

Decentralized Averaging
Algorithms

< Divide time into quanta
& At theend of each quantum
» Each machine broadcasts its current time

» Each machine averages all of the responses and setsits
own clock accordingly

» Can discard highest and lowest m valuesto
+ Variation account for propagation delay.

Using Synchronized Clocks
I mplementing at-most-once semantics

« Traditional approach
» each message has unique message id
» server maintainslist of id's
» can lose message numbers on server crash
» how long does server keep id’s?
+ With globally synchronized clocks
» sender assigns a timestamp to message
» server keeps most recent timestamp for each connection
« reject any message with lower timestamp (is a duplicate)
» removing old timestamps
< G = CurrentTime - MaxLifeTime - MaxClockSkew
« timestamps older than G are removed

At-M ost-Once Semantics
(cont.)

& After aserver crash

» CurrentTimeis recomputed
< using global synchronization of time

» all messages older than G are rejected

» meaning all messages before crash are rejected as

duplicate

< some new messages may be wrongfully rejected
% but at-most-once semantics is guaranteed

Using Synchronized Clocks
Cache Consistency

< Problem if two simultaneously update
» solution: distinguish between caching for read or write
+ readers must invalidate cache if writer is present
« server must verify that all readers have invalidated their cache
< even if cache is very old
& Clock-based cache consistency
» clientsgiven a*lease”
+ specifies how long cache is valid
% clients can renew leases without re-caching
» server invalidates caches whose |eases have not expired
« if thereisa client crash, just wait for lease to expire
» global clock ensures agreement of lease time
+ even in the face of crashes

Mutual Exclusion in
Distributed Systems

+ Centralized mutex
» choose a coordinator
« all critical region (CR) requests go to coordinator
< coordinator grants or denies permission
& Request/reply model
» plrequests, CR isavailable
< coordinator sends areply
« reply indicates permission to enter CR
» (ueue subsequent requests
< do not send areply
» when p1 finished, send areply to first in queue

Mutual Exclusion (cont.)

+ Request/grant or deny model
» send ‘permission denied” when CR is busy
» two possibilities
< send ‘grant’ message when process given CR
« let requesting process decide what to do - polling
+ Problems with centralized approach
» single point of failure, bottleneck (the usual...)
Distributed agorithm (Lamport)
» uselogica clocks to achieve mutual exclusion
» each process has a request queue
» decisions made locally, global exclusion maintained

Lamport’s Distributed M utex
Alg. Using L ogical Clocks

& Suppose P, wants access to critical region
» P, sends message with T, to every process
» P receives message, places it on request queue, sends
ack with T,
» P gets resource when:
% 1) T, inP/’srequest queue < all other time stamps
« 2) P, receives ack messages from all other processes
timestamped later than T,
+ note that control islocal to P,
» when i finished with CR
« P, removes T, from message queue, sends timestamped “P,
releases resource” message
+« P’sreceiving the message remove T,'s from queue

Ricart and Agrawala

& Lamport’s algorithm
» requires 3(N-1) messages per critical section request
< broadcast mediums reduce to 3 messages
Ricart and Agrawala s algorithm
» requires only arequest and reply message
» (no release required)
» therefore 2(N-1) messages per CS request

Lamport’s Algorithm
(example) , P

P, enters
critical
section

queue(j10)
5

1
queue(j10)
14

Piin
critical
section
3 >&’ e
12 ack(12) 12
queue(j10, i5)
queue(i5, j10) 11
N ><
queue(i5) request (i5) request (j10) queue(j10)
4 9 x

Richart and Agrawala’s
Algorithm

& When receiving a request from process P;:
» receiver isnot in and does not want CR
« send OK to P,
» receiver aready in CR
< queue the request
» receiver wants CR, but has not been granted
« if timestamp > P's, send OK to P,
+ otherwise, queue request
¢ When finished with CR, process sends OK to all
processes in queue
« P, enterscritical section after receiving OK replies
from all other processes in group

Richart and Agrawala

Example

kinCR

-

iinCR

% o

request(i8)

Richart and Agrawala
Example

J K

/ kinCR

jinCR
%’M

iinCR

q(i8, k9)
qi8)

request(j8) request(k9)

Problemswith Both
Algorithms

¢ No single point of failure
» each process makes independent decisions
» But what if one process doesn’'t send an OK?
« aform of deadlock
» now there are n points of failure
& Group communication is needed
» must maintain alist of group members
» either each process...
» or use primitives discussed in Chapter 2
All processes are involved in al decisions
» increases the overall system load

Token Passing M utex

¢ General structure
» one token per CR
» only process with token allowed in CR
» token passed from process to process
% logical ring
+ Mutex
» pass token to process i+ 1modN

» received token gives permission to enter CR
< hold token while in CR

» must pass token after exiting CR

» fairness ensured: each process waits at most n-1 entries to
get CR

Token Passing M utex

< Difficulties with token passing mutex
» lost tokens: electing a new token generator

» duplicate tokens: ensure by not generating more than one
token

Mutex Comparison

& Centralized
» simplest, most efficient
» centralized coordinator crashes
< need to choose a new coordinator
« Distributed
» 2(n-1) messages per entry/exit (Ricart & Agrawala)
» if any process crashes with a non-empty queue,
agorithm won't work
¢ Token Ring

» if there arelots of CR requests, between 0 and
unbounded # of messages per entry/request
< if CR requestsrare, unbounded number of messages

» need methods for re-generating alost token

Election Algorithms

¢ Centralized approaches often necessary
» best choice in mutex, for example
» but need method of electing a new coordinator when it
fails
¢ General assumptions
» give processes unique system/global numbers
» elect (live) process with highest process number
» processes know process number of members
» all processes agree on new coordinator

The Bully Algorithm

+ Suppose the coordinator doesn’t respond to pl's
request
» pl holds an election by sending an el ection message to all
processes with higher numbers
» if pl receives no responses, pl isthe new coordinator
» if any higher numbered process responds, p1 endsits election
« |f aprocess with a higher number receives an election
request
» reply to the sender
< to tell sender that it has lost the election
» hold an election of its own
» eventually all give up but highest surviving process

The Bully Algorithm (cont.)

& Example: processes 0-7, 4 detects that 7 has

crashed
DR
® ®

©
o @

The Bully Algorithm (cont.)

& Example: process 4 holds an election

The Bully Algorithm (cont.)

& Example: processes 5 and 6 respond with OK
o ©
e

©
e @

The Bully Algorithm (cont.)

& Example: Processes 5 and 6 hold elections

Election
Election

Election

The Bully Algorithm (cont.)

& Example: process 6 sends OK
DR
@ o

©
o @

The Bully Algorithm (cont.)

& Example: process 6 is the new Coordinator

l Coordinator
. Coordinator

®

Ring Algorithm

& Processes are ordered
» each process knows its successor
» no token involved

& Any process noticing that the coordinator is not responding
» sends an election message to its successor
< if successor is down, send to next member
< therefore each process has full knowledge of the ring
» receiving process adds its number to the message and passes it
along
& When message gets back to election initiator
» change message to coordinator
» circulateto al members
< note that members now have complete (and ordered) list of members
» coordinator is highest process number

Ring Algorithm (cont.)

& What if more than one process detects a crashed
coordinator?
» more than one election will be produced

» al messages will contain the same information
< member process numbers
« order of members

» same coordinator is chosen (highest number)

