What is a finite state automaton?

- A model of computation
- A set of states and how to get from some state to other states

Why do we care?

- An ideal representation of a computer
 - Why?
 - A state describes the computer at any given point
 - Programs, memory, etc.
 - Many states, but still a finite number
- Represents legal steps of a process
 - Some computation
 - Valid inputs
 - Valid words in a language
 - Compilers

Vending Machine Example

- Accepts only nickels and dimes
- Everything costs 20 cents

- Consider the state of the vending machine
 - We’ll model the state by how much money has been deposited.
 - What is the initial state of the vending machine?

Vending Machine Initial State

- Start with 0¢ deposited.
 - Called the initial state of the machine.
 - A circle is drawn for the state

- An arrow pointing to this state marks it as the initial state.
Where to from here?

- Make transitions to different states...
- What can we do?
 - Deposit a nickel
 - Deposit a dime

Depositing a nickel...

- Takes us to a new state: 5¢ deposited
- Add an arrow for the transition
 - Label it with the input we gave to the machine

Depositing a dime...

- Similarly...

From here...

- There are many possibilities as to what could happen
- We’re going to consider what happens when we deposit another dime.
 - Goes to a new state: 20¢ deposited.
 - That means we’ve put in enough money to buy something.
 - The vending machine “accepts” 20¢ as a place to stop.
 - Called an accepting state

Another dime...

- Add new state with double circle to denote that it’s an accepting state.

Complete Vending Machine
Another example

Finite State Machine (FSM)

- Finite automata are similar to FSM’s, but
 - they do not produce any outputs,
 - they just accept input sequences (an accepting set of states is given).
- Let’s define the idea of a “machine”
 - organism (real or synthetic) that responds to a countable (finite) set of stimuli (events) by generating predictable responses (outputs) based on a history of prior events (current state).
- A finite state machine (FSM) is a computational model of a machine.

FSM Elements

- **States** represent the particular configurations that our machine can assume.
- **Events** define the various inputs that a machine will recognize.
- **Transitions** represent a change of state from a current state to another (possibly the same) state that is dependent upon a specific event.
- **The Start State** is the state of the machine before it has received any events.

Finite State Machine (FSM)

Moore Machine: is a quintuple: M(S, I, O, δ, λ)
- S: finite non-empty set of states
- I: finite non-empty set of inputs
- O: finite non-empty set of outputs
- δ: S x I → S (transition or next state) function
- λ: S → O (output function (note: output only a function of present state))

Mealy Machine: M(S, I, O, δ, λ) but
- λ: S x I → O (i.e. output depends on both present state and present input)
- for digital circuits, typically I = \{0,1\}^n and O = \{0,1\}^m

In addition, (for both Moore and Mealy machines) certain states are classified as reset or initial states.
Machine Types

- **Mealy machine**
 - one that generates an output for each transition.
- **Moore machine**
 - one that generates an output for each state.
- Moore machines can do anything a Mealy machine can do (and vice versa).
- The following example FSM is a Mealy machine.

Prediction by finite state machines

- Finite state machine (FSM):
 - States S
 - Inputs I
 - Outputs O
 - Transition function $\delta : S \times I \rightarrow S \times O$
 - Transforms input stream into output stream
- Can be used for predictions, e.g. to predict next input symbol in a sequence

FSM example

- Consider the FSM with:
 - $S = \{A, B, C\}$
 - $I = \{0, 1\}$
 - $O = \{a, b, c\}$
 - δ given by a diagram

FSM as predictor

- Consider the following FSM
- Task: predict next input
- Quality: $\%$ of $i_{n+1} = o_{n}$
- Given initial state C
- Input sequence 011101
- Leads to output 110111
- Quality: 3 out of 5

Quake Bot Example

- Types of behavior to capture:
 - Wander randomly if don’t see or hear an enemy
 - When see enemy, attack
 - When hear an enemy, chase enemy
 - When die, respawn
 - When health is low and see an enemy, retreat
- Extensions:
 - When see power-ups during wandering, collect them
- Borrowed from John Laird and Mike van Lent’s GDC tutorial

Example FSM

- States:
 - E: enemy in sight
 - S: sound audible
 - D: dead
- Events:
 - E: see an enemy
 - S: hear a sound
 - D: die
- Action performed:
 - On each transition
 - On each update in some states (e.g. attack)
Example FSM Problem

- States:
 - E: enemy in sight
 - S: sound audible
 - D: dead

- Events:
 - E: see an enemy
 - S: hear a sound
 - D: die

Problem: Can’t go directly from attack to chase. Why not?

Better Example FSM

- States:
 - E: enemy in sight
 - S: sound audible
 - D: dead

- Events:
 - E: see an enemy
 - S: hear a sound
 - D: die

Extra state to recall whether or not heard a sound while attacking

Example FSM with Retreat

- States:
 - E: enemy in sight
 - S: sound audible
 - D: dead
 - L: low health

Worst case: Each extra state variable can add 2^n extra states

Hierarchical FSMs

- What if there is no simple action for a state?
- Expand a state into its own FSM, which explains what to do if in that state
- Some events move you around the same level in the hierarchy, some move you up a level
- When entering a state, have to choose a state for it’s child in the hierarchy
 - Set a default, and always go to that
 - Or, random choice
 - Depends on the nature of the behavior

Hierarchical FSM Example

- Note: This is not a complete FSM
 - All links between top level states still exist
 - Need more states for wander

Non-Deterministic Hierarchical FSM (Markov Model)

- Adds variety to actions
- Have multiple transitions for the same event
- Label each with a probability that it will be taken
- Randomly choose a transition at run-time
- Markov Model: New state only depends on the previous state