
 1

CSCE 310 Data Structures & Algorithms

Fall 2004
Steve Goddard

Homework 3, October 7, 2004
(Total of 100 points)

Chapter 4 and 5.1 (Insertion Sort)

Due: 9:00pm Thursday, October 21, 2004

Exercises From the Book (40 points):

4.1 #2 (15 pts)
4.2 #6 (10 pts)
4.2 #10 (10 pts)
5.1 #6 – Explain your answers (5 pts)

Programming Exercise (60 points):

For this assignment you will be reading in the inventory file, and sorting the contents using a hybrid sorting
algorithm.

The inventory file format is as shown at http://cse.unl.edu/~goddard/Courses/CSCE310J/Project/InventoryFile.csv.
For this assignment, you should know that the first line of the file consists of header information. There is a long
series of empty headers spaces which corresponds to a set of subheaders in the second line. For the purposes of this
assignment, know that the sortable headers are on the first line, and the non-sortable headers are on the second line.
The third line is where the actual data starts.

Your job is to read this file in and store each product in an object. Then, you must write an algorithm that can sort
the items based on which fields that the user wants the data sorted by. This algorithm must be a hybrid sorting
algorithm that uses quicksort to perform sorting until the partitions being sorted reach a size that you (the
programmer) choose, at which point you sort the remaining part of the partition using insertion sort. You should be
able to justify the cutoff point you choose in the analysis.

The user will invoke the program inventory_sort using the following command line arguments:

i nvent or y_sor t f i l ename f i el d1sor t [f i el d2sor t] [f i el d3sor t] . . .

For example if i nvent or y f i l ename " Pr oduct i on Quant i t y" " Pr i mar y Vendor " is run, it will
sort each product by Pr oduct i on Quant i t y first. Then, if any products have the same Pr oduct i on
Quant i t y , they will be sorted by Pr i mar y Vendor . If the products are otherwise identical, your sorting
algorithm should be stable, so if Pr oduct 1 was before Pr oduct 2 in the original file, the resulting output should
also have Pr oduct 1 before Pr oduct 2.

 2

As output, your program should print all data in the original file to the console, including the header and subheader
information. The output should be sorted, of course.

Notes:
In order to make this assignment gradable I will be using an autograding script. This means you must follow the
formatting of the input file EXACTLY for your program to output results that the grader will recognize as correct.
This means your program should not output extra spaces after commas, extra spaces at the end of lines, or extra lines
at the end of the file. Such extraneous characters will result in the loss of points.

You will also notice that in the sample input file, any I t em Name that contains a quote character in the name is
surrounded by quotes itself, with the actual quote character represented by a double-quote (look at the " Bol t
(1/ 2" ") "). Also, the Acqui si t i on Pr ef er ences field is surrounded by quotes, but only if there is a
comma involved in the list (since there are more than 1 preference). Therefore, in all cases your program should:

1. Evaluate strings that are surrounded by quotes by remove the surrounding quotes and evaluating "" to a
single ".

2. Sort based on the evaluated strings (i.e. sort Bol t (1/ 2") and not " Bol t (1/ 2" ") ")
3. Reformat strings for outputting. This means that if the string contains a comma or a quote, then you

should add quotes around the whole string and replace any " with "" inside the string.

Note that you do NOT need to know specifically which field the string is in to perform these 3 operations. The
program should respond in exactly the same manner if, for example, a vendor name contains a comma and is
therefore surrounded by quotes (i.e. if Fr anni e' s Fancy Embl em Mf g. was actually " Fr anni e' s Fancy
Embl em, I nc. " , you would need to add the quotes because the name itself contains a comma).

Analysis: Prepare a report in which the following are considered.

. What cutoff point did you choose for the transition between using quicksort and using insertion sort?

. Why did you choose the cutoff point you did for the insertion sort?

. Give a quantifiable reason for why your cutoff is better than other points and better than a quicksort that
doesn’ t use insertion sort. You may want to use a comparison of efficiency classes.

This analysis report should also (as in previous assignments) describe how your program works, what design choices
(if any) were made and why, and any known defects. You may also discuss enhancements you think should be
made, but were beyond the scope of the assignment (i.e., inadequacy of the specifications).

Deliverables:
You should turn in your analysis document, all code, and a makefile to build your program into the web-handin.
You should also submit a hard copy of your analysis to me. I should be able to type make to make your program.

This problem will be scored at follows:
 Program correctness (as defined) 30% (18 pts)

Quality of design/readability 15% (9 pts)
 In-line documentation/coding standard 20% (12 pts)

Design and analysis document 25% (15 pts)
Thoroughness of test cases 10% (6 pts)

