CSCE 230J Computer Organization

Floating Point

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- ■I have modified them and added new slides.

Topics

- **■IEEE Floating Point Standard**
- **■**Rounding
- **■Floating Point Operations**
- **■**Mathematical properties

3

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

x == (int)(float) x

IEEE Floating Point

IEEE Standard 754

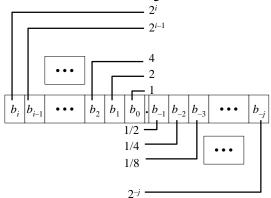
- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

5

Fractional Binary Numbers



Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \cdot 2^k$$

Frac. Binary Number Examples

Value	Representation
-------	----------------

5-3/4 101.11₂
2-7/8 10.111₂
63/64 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 just below 1.0
 - \bullet 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \rightarrow 1.0
 - •Use notation 1.0 − ε

7

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation		
1/3	0.0101010101[01] ₂		
1/5	$0.001100110011[0011]{2}$		
1/10	$0.0001100110011[0011]_{2}$		

Floating Point Representation

Numerical Form

- -1° M 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

9

Floating Point Precisions

Encoding

- MSB is sign bit
- exp field encodes E
- frac field encodes M

Sizes

- Single precision: 8 exp bits, 23 frac bits
 - •32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - ●64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - » 1 bit wasted

"Normalized" Numeric Values

Condition

■ $\exp \neq 000...0$ and $\exp \neq 111...1$

Exponent coded as biased value

E = Exp - Bias

- Exp: unsigned value denoted by exp
- Bias : Bias value
 - » Single precision: 127 (Exp: 1...254, E: -126...127)
 - » Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - » in general: Bias = 2e-1 1, where e is number of exponent bits

Significand coded with implied leading 1

```
M = 1.xxx...x_2
```

- xxx...x: bits of frac
- Minimum when 000...0 (M = 1.0)
- Maximum when 111...1 ($M = 2.0 \epsilon$)
- Get extra leading bit for "free"

11

Normalized Encoding Example

Value

Float F = 15213.0;

■ $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

Significand

 $M = 1.1101101101101_{2}$

Exponent

E = 13

Bias = 127

 $Exp = 140 = 10001100_2$

Floating Point Representation (Class 02):

Hex: 4 6 6 D B 4 0 0

140: 100 0110 0

Denormalized Values

Condition

 $= \exp = 000...0$

Value

- Exponent value *E* = -*Bias* + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- \blacksquare exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and −0
- $= \exp = 000...0, \operatorname{frac} \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

13

Special Values

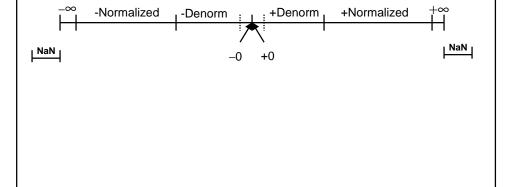
Condition

■ exp = 111...1

Cases

- exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- $= \exp = 111...1, \operatorname{frac} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), ∞ ∞

Summary of Floating Point Real Number Encodings



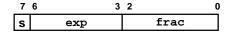
Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity



16

Values Related to the Exponent 2E \mathbf{Exp} exp E 0000 0 -6 1/64 (denorms) 0001 -6 1/64 0010 -5 1/32 0011 1/16 0100 -3 1/8 1/4 5 0101 -2 0110 -1 1/2 6 0 1 0111 7 1000 +1 2 8 1001 +2 4 9 1010 +3 8 10 11 1011 +4 16 12 1100 +5 32 13 1101 +6 1110 +7 128 14 (inf, NaN) 15 1111 n/a

17

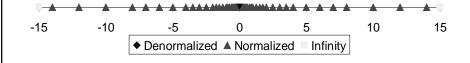
Dynamic Range s exp frac E Value 0 0000 000 1/8*1/64 = 1/512 **←**closest to zero 0 0000 001 Denormalized 0 0000 010 2/8*1/64 = 2/512numbers 0 0000 110 -6 6/8*1/64 = 6/5120 0000 111 -6 7/8*1/64 = 7/512 ← largest denorm 8/8*1/64 = 8/512 ← smallest norm 0 0001 000 0 0001 001 9/8*1/64 = 9/512 -6 0 0110 110 14/8*1/2 = 14/16-1 0 0110 111 -1 $15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$ **Normalized** 0 0111 000 8/8*1 = 1numbers 9/8*1 = 9/8 ← closest to 1 above 0 0111 001 0 0111 010 10/8*1 = 10/814/8*128 = 224 0 1110 110 ← largest norm 0 1110 111 7 15/8*128 = 240 0 1111 000 inf n/a 18

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

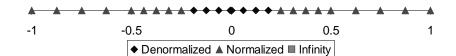


19

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3



Interesting Numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. ■ Single ≈ 1.4 X 10 ⁻⁴ ■ Double ≈ 4.9 X 10 ⁻⁶		0001	2- {23,52} X 2- {126,1022}
Largest Denormalized ■ Single ≈ 1.18 X 10 ⁻¹ ■ Double ≈ 2.2 X 10 ⁻¹	-38	1111	$(1.0 - \epsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized Just larger than lar			1.0 X 2 ^{- {126,1022} }
One	0111	0000	1.0
Largest Normalized ■ Single ≈ 3.4 X 10 ³⁸		1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

21

Special Properties of Encoding

FP Zero Same as Integer Zero

■ All bits = 0

■ Double ≈ 1.8 X 10³⁰⁸

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations

Conceptual View

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
■ Zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
■ Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

23

Closer Look at Round-To-Even

Default Rounding Mode

1.2450000

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

(Half way-round down)

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.24

1.2349999 1.23 (Less than half way) 1.2350001 1.24 (Greater than half way) 1.2350000 1.24 (Half way—round up)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- Half way when bits to right of rounding position = 100...,

Examples

■ Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

25

FP Multiplication

Operands

 $(-1)^{s1} M1 2^{E1}$ * $(-1)^{s2} M2 2^{E2}$

Exact Result

 $(-1)^s M 2^E$

■ Sign s: s1 ^ s2

■ Significand M: M1 * M2

■ Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round M to fit frac precision

Implementation

■ Biggest chore is multiplying significands

FP Addition

Operands

 $(-1)^{s1} M1 \ 2^{E1}$ $(-1)^{s2} M2 \ 2^{E2}$

■ **Assume** *E1* > *E2*

Exact Result

 $(-1)^s M 2^E$

- Sign s, significand M:
 - Result of signed align & add
- Exponent *E*: *E*1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k

 $(-1)^{s1} M1$

 $(-1)^{s2} M2$

(-1)^s M

- Overflow if *E* out of range
- Round M to fit frac precision

27

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? YES
 - But may generate infinity or NaN
- Commutative? YES
- Associative? NO
 - Overflow and inexactness of rounding
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
 - Except for infinities & NaNs

Monotonicity

- $a \ge b \Rightarrow a+c \ge b+c$? ALMOST
 - Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

■ Closed under multiplication? YES

• But may generate infinity or NaN

■ Multiplication Commutative? YES

■ Multiplication is Associative? NO

Possibility of overflow, inexactness of rounding

■ 1 is multiplicative identity? YES

■ Multiplication distributes over addition? NO

Possibility of overflow, inexactness of rounding

Monotonicity

■ $a \ge b \& c \ge 0 \Rightarrow a *c \ge b *c$? ALMOST

Except for infinities & NaNs

29

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - » Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Answers to Floating Point Puzzles

Assume neither d nor f is NAN

x == (int)(float) x
 x == (int)(double) x
 f == (float)(double) f

Yes: 53 bit significand
Yes: increases precision
No: loses precision

No: 24 bit significand

• f == -(-f);

Yes: Just change sign bit

• 2/3 **==** 2/3.0

d == (float) d

No: 2/3 == 0 Yes!

• $d < 0.0 \Rightarrow ((d*2) < 0.0)$

Yes!

• d > f ⇒-f < -d • d * d >= 0.0

Yes!

• (d+f)-d == f

No: Not associative

31

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form M X 2^E
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers