Integers

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O’Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.
Topics

- **Numeric Encodings**
 - Unsigned & Two’s complement

- **Programming Implications**
 - C promotion rules

- **Basic operations**
 - Addition, negation, multiplication

- **Programming Implications**
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

 Initialization

  ```c
  int x = foo();
  int y = bar();
  unsigned ux = x;
  unsigned uy = y;
  ```

- $x < 0$ \implies ((x*2) < 0)
- $ux >= 0$
- $x & 7 == 7$ \implies (x<<30) < 0
- $ux > -1$
- $x > y$ \implies -$x < -$y
- $x * x >= 0$
- $x > 0 && y > 0$ \implies $x + y > 0$
- $x >= 0$ \implies -$x <= 0$
- $x <= 0$ \implies -$x >= 0$
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

\[
\begin{array}{c|c|c|c|c}
\text{Decimal} & \text{Hex} & \text{Binary} \\
\hline
x & 15213 & 00111011 01101101 \\
y & -15213 & C4 93 11000100 10010011 \\
\end{array}
\]

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

\[
\begin{array}{c|c|c|c|c}
\text{Weight} & 15213 & -15213 \\
\hline
1 & 1 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 2 \\
4 & 1 & 4 & 0 & 0 \\
8 & 1 & 8 & 0 & 0 \\
16 & 0 & 0 & 1 & 16 \\
32 & 1 & 32 & 0 & 0 \\
64 & 1 & 64 & 0 & 0 \\
128 & 0 & 0 & 1 & 128 \\
256 & 1 & 256 & 0 & 0 \\
512 & 1 & 512 & 0 & 0 \\
1024 & 0 & 0 & 1 & 1024 \\
2048 & 1 & 2048 & 0 & 0 \\
4096 & 1 & 4096 & 0 & 0 \\
8192 & 1 & 8192 & 0 & 0 \\
16384 & 0 & 0 & 1 & 16384 \\
-32768 & 0 & 0 & 1 & -32768 \\
\hline
\text{Sum} & 15213 & -15213 \\
\end{array}
\]
Numeric Ranges

Unsigned Values
- $U_{\text{Min}} = 0$
 - 000...0
- $U_{\text{Max}} = 2^w - 1$
 - 111...1

Two's Complement Values
- $T_{\text{Min}} = -2^{w-1}$
 - 100...0
- $T_{\text{Max}} = 2^{w-1} - 1$
 - 011...1

Other Values
- Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

C Programming
- `#include <limits.h>`
 - K&R App. B11
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform-specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings
- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
 - Bit pattern for two’s comp integer

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```c
short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;
```

Resulting Value
- No change in bit representation
- Nonnegative values unchanged
 - ux = 15213
- Negative values change into (large) positive values
 - uy = 50323
Relation between Signed & Unsigned

Two’s Complement

<table>
<thead>
<tr>
<th>w-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Unsigned

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Maintain Same Bit Pattern

\[x_{xy} = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \]

Relation Between Signed & Unsigned

<table>
<thead>
<tr>
<th>Weight</th>
<th>-15213</th>
<th>50323</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>1</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>1</td>
<td>32768</td>
</tr>
<tr>
<td>Sum</td>
<td>-15213</td>
<td>50323</td>
</tr>
</tbody>
</table>

\[u_y = y + 2 \times 32768 = y + 65536 \]
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix
 0U, 4294967259U

Casting
- Explicit casting between signed & unsigned same as U2T and T2U
 int tx, ty;
 unsigned ux, uy;
 tx = (int) ux;
 uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls
 tx = ux;
 uy = ty;

Casting Surprises

Expression Evaluation
- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

<table>
<thead>
<tr>
<th>Constant₁</th>
<th>Constant₂</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>=1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>=1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>=2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>=2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) =1</td>
<td>=2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2's Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive

Sign Extension

Task:
- Given \(w\)-bit signed integer \(x\)
- Convert it to \(w+k\)-bit integer with same value

Rule:
- Make \(k\) copies of sign bit:
 \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0\)
Sign Extension Example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00110111011</td>
</tr>
<tr>
<td>ix</td>
<td>00</td>
<td>00 3B 6D 000000000000000000110111 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93 11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Justification For Sign Extension

Prove Correctness by Induction on \(k \)

- Induction Step: extending by single bit maintains value

\[
\begin{align*}
X & \quad \rightarrow \quad w \\
\begin{array}{c}
. . . \\
. . .
\end{array} & \quad \rightarrow \quad w \\
\begin{array}{c}
. \quad . \quad . \\
. \quad . \quad .
\end{array} & \quad \rightarrow \quad w+1 \\
X' & \quad \leftarrow \quad w+1
\end{align*}
\]

- Key observation: \(-2^{w-1} = -2^w + 2^{w-1}\)
- Look at weight of upper bits:

\[
\begin{align*}
x & \quad -2^{w-1} x_{w-1} \\
x' & \quad -2^w x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}
\end{align*}
\]
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonzero

- C compilers on some machines generate less efficient code
  ```c
  unsigned i;
  for (i = 1; i < cnt; i++)
      a[i] += a[i-1];
  ```
- Easy to make mistakes
  ```c
  for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
  ```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range

- Working right up to limit of word size

Negating with Complement & Increment

Claim: Following Holds for 2’s Complement

\[\sim x + 1 = = -x \]

Complement

- Observation: \(\sim x + x = = 1111...11 = = -1 \)

```
  x 10011101
  + \sim x 01100110
   ---------
   -1 11111111
```

Increment

- \(\sim x + \sim + (\sim + 1) = = \sim + (\sim + \sim) \)
- \(\sim x + 1 = = -x \)

Warning: Be cautious treating int’s as integers

- OK here
Compu. & Incr. Examples

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(-x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(-x+1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\[\begin{array}{|c|c|c|c|}
\hline
 & \text{Decimal} & \text{Hex} & \text{Binary} \\
\hline
0 & 0 & 00 00 & 00000000 00000000 \\
-0 & -1 & FF FF & 11111111 11111111 \\
-0+1 & 0 & 00 00 & 00000000 00000000 \\
\hline
\end{array} \]

Unsigned Addition

Operands: \(w \) bits

\[u \]

\[+ \]

\[v \]

True Sum: \(w+1 \) bits

\[u + v \]

Discard Carry: \(w \) bits

\[\text{UAdd}_w(u, v) \]

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic

\[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]

\[\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases} \]
Visualizing Integer Addition

Integer Addition
- 4-bit integers \(u, v \)
- Compute true sum \(\text{Add}_4(u, v) \)
- Values increase linearly with \(u \) and \(v \)
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around
- If true sum \(\geq 2^w \)
- At most once

True Sum
\[
\begin{array}{c|c|c}
2^{w-1} & \text{Overflow} & 2^w \\
0 & \text{Modular Sum} &
\end{array}
\]

Overflow
Mathematical Properties

Modular Addition Forms an *Abelian Group*

- Closed under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1\]
- Commutative
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u)\]
- Associative
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v)\]
- 0 is additive identity
 \[\text{UAdd}_w(u, 0) = u\]
- Every element has additive inverse
 - Let \[\text{UComp}_w(u) = 2^w - u\]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0\]

Two’s Complement Addition

Operands: \(w\) bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v}
\end{array}
\]

True Sum: \(w+1\) bits

\[
\begin{array}{c}
\text{u + v}
\end{array}
\]

Discard Carry: \(w\) bits

\[
\begin{array}{c}
\text{TAdd}_w(u, v)
\end{array}
\]

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:
  ```c
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```
- Will give \(s == t\)
Characterizing TAdd

Functionality
- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{w-1})</td>
<td>(011...1)</td>
</tr>
<tr>
<td>(0)</td>
<td>(000...0)</td>
</tr>
<tr>
<td>(-2^{w-1})</td>
<td>(100...0)</td>
</tr>
<tr>
<td>(-2^w)</td>
<td>(100...0)</td>
</tr>
</tbody>
</table>

\[
\text{TAdd} (u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < \text{Min}_w \text{ (NegOver)} \\
 u + v & \text{Min}_w \leq u + v \leq \text{Max}_w \\
 u + v - 2^w & \text{Max}_w < u + v \text{ (PosOver)}
\end{cases}
\]

Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum \(\geq 2^{w-1} \)
 - Becomes negative
 - At most once
- If sum \(< -2^{w-1} \)
 - Becomes positive
 - At most once
Detecting 2’s Comp. Overflow

Task
- Given $s = \text{TAdd}_w(u, v)$
- Determine if $s = \text{Add}_w(u, v)$
- Example

 int s, u, v;
 s = u + v;

Claim
- Overflow iff either:

 $u, v < 0$, $s \geq 0$ (NegOver)

 $u, v \geq 0$, $s < 0$ (PosOver)

 $\text{ovf} = (u < 0 == v < 0) \&\& (u < 0 != s < 0)$;

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd
- $\text{TAdd}_w(u, v) = \text{U2T(UAdd}_w(\text{T2U}(u), \text{T2U}(v)))$

 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group
- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

 Let $\text{TComp}_w(u) = \text{U2T(UComp}_w(\text{T2U}(u))$

 $\text{TAdd}_w(u, \text{TComp}_w(u)) = 0$

 $$
 \text{TComp}_w(u) = \begin{cases}
 -u & u \neq \text{TMin}_w \\
 \text{TMin}_w & u = \text{TMin}_w
 \end{cases}
 $$
Multiplication

Computing Exact Product of w-bit numbers x, y
- Either signed or unsigned

Ranges
- **Unsigned**: $0 \leq x\cdot y \leq (2^w-1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to 2^w bits
- **Two’s complement min**: $x\cdot y \geq (-2^{w-1})(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2^w-1 bits
- **Two’s complement max**: $x\cdot y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2^w bits, but only for $(TMin_w)^2$

Maintaining Exact Results
- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages

Unsigned Multiplication in C

<table>
<thead>
<tr>
<th>u</th>
<th>• • • • • • • • • •</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>• • • • • • • • • •</td>
</tr>
</tbody>
</table>

True Product: 2^w bits

| $u\cdot v$ | • • • • • • • • • • |

Discard w bits: w bits

| UMult$_w(u,v)$ | • • • • • • • • • • |

Standard Multiplication Function
- Ignores high order w bits

Implements Modular Arithmetic

$UMult_w(u,v) = u\cdot v \mod 2^w$
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

- Truncates product to w-bit number $up = \text{UMult}_w(ux, uy)$
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two’s Complement Multiplication

int x, y;
int p = x * y;

- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number $p = \text{TMult}_w(x, y)$

Relation

- Signed multiplication gives same bit-level result as unsigned
- $up == (\text{unsigned}) p$
Power-of-2 Multiply with Shift

Operation
- $u << k$ gives $u \cdot 2^k$
- Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>u</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Product: $w+k$ bits</td>
<td>$u \cdot 2^k$</td>
<td></td>
</tr>
<tr>
<td>Discard k bits: w bits</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

Examples
- $u << 3 = = u \cdot 8$
- $u << 5 - u << 3 = = u \cdot 24$
- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2
- $u >> k$ gives $\lfloor u / 2^k \rfloor$
- Uses logical shift

<table>
<thead>
<tr>
<th>Operands: u</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division: $u / 2^k$</td>
<td></td>
</tr>
<tr>
<td>Result: $\lfloor u / 2^k \rfloor$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>$x >> 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>D B6</td>
</tr>
<tr>
<td>$x >> 4$</td>
<td>950.8125</td>
<td>950</td>
<td>3 B6</td>
</tr>
<tr>
<td>$x >> 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2
- \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
- Uses arithmetic shift
- Rounds wrong direction when \(u < 0 \)

Operands:

\[
x \quad / \quad 2^k
\]

\[
\begin{array}{c}
x \\
/ \quad 2^k \\
\end{array}
\]

Division:

\[
x / 2^k
\]

Result:

\[
\text{RoundDown}(x / 2^k)
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y >> 1</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>y >> 4</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>y >> 8</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2
- Want \(\lceil x / 2^k \rceil \) (Round Toward 0)
- Compute as \(\lceil (x+2^{k-1}) / 2^k \rceil \)
 - In C: \((x + (1<<k) - 1) >> k \)
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2^k ← 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>2^k</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[u / 2^k]</th>
</tr>
</thead>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>(x)</th>
<th>(+2^k+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 \ldots)</td>
<td>(k)</td>
<td></td>
</tr>
<tr>
<td>(0 \ldots)</td>
<td>(0 \ldots)</td>
<td></td>
</tr>
<tr>
<td>(0 \ldots)</td>
<td>(0 \ldots)</td>
<td></td>
</tr>
<tr>
<td>(1 \ldots)</td>
<td>(1 \ldots)</td>
<td></td>
</tr>
</tbody>
</table>

Divisor: \(/ 2^k \)

| \(\left\lfloor x / 2^k \right\rfloor \) | \(1 \ldots \) | \(1 \ldots \) | \(0 \ldots \) |

Biasing adds 1 to final result

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \(0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \)
- Multiplication Commutative
 \(\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \)
- Multiplication is Associative
 \(\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \)
- 1 is multiplicative identity
 \(\text{UMult}_w(u, 1) = u \)
- Multiplication distributes over addition
 \(\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \)
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two’s complement multiplication and addition
 - Truncating to w bits

Both Form Rings

- Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,
 \[
 u > 0 \implies u + v > v \\
 u > 0, v > 0 \implies u \cdot v > 0
 \]
- These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{Max} + 1 = T_{Min}
 \]
 \[
 15213 \times 30426 = -10030 \text{ (16-bit words)}
 \]

C Puzzle Answers

- Assume machine with 32 bit word size, two’s comp. integers
- T_{Min} makes a good counterexample in many cases

- $x < 0 \implies (x * 2) < 0$
 False: T_{Min}
- $ux >= 0$
 True: $0 = U_{Min}$
- $x & 7 == 7 \implies (x<<30) < 0$
 True: $x_1 = 1$
- $ux > -1$
 False: 0
- $x > y \implies -x < -y$
 False: -1, T_{Min}
- $x * x >= 0$
 False: 30426
- $x > 0 \&\& y > 0 \implies x + y > 0$
 False: T_{Max}, T_{Max}
- $x >= 0 \implies -x <= 0$
 True: $-T_{Max} < 0$
- $x <= 0 \implies -x >= 0$
 False: T_{Min}