
Page 1

Web Services

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

� I have modified them and added new
slides.

Page 2

3

Topics

�HTTP
�Serving static content
�Serving dynamic content

4

Web History
1945:

� Vannevar Bush, “ As we may think” , Atlantic Monthly, July,
1945.
� Describes the idea of a distributed hypertext system.
� A “ memex” that mimics the “ web of trails” in our minds.

1989:
� Tim Berners-Lee (CERN) writes internal proposal to develop

a distributed hypertext system.
� Connects “ a web of notes with links.”
� Intended to help CERN physicists in large projects share and

manage information

1990:
� Tim BL writes a graphical browser for Next machines.

Page 3

5

Web History (cont)
1992

� NCSA server released

� 26 WWW servers worldwide

1993
� Marc Andreessen releases first version of NCSA Mosaic

browser

� Mosaic version released for (Windows, Mac, Unix).

� Web (port 80) traffic at 1% of NSFNET backbone traffic.

� Over 200 WWW servers worldwide.

1994
� Andreessen and colleagues leave NCSA to form "Mosaic

Communications Corp" (now Netscape).

6

Internet Hosts

Page 4

7

Web Servers

Web
server

HTTP r equest

HTTP r esponse
(cont ent)

Clients and servers
communicate using the
HyperText Transfer
Protocol (HTTP)
� Client and server

establish TCP connection

� Client requests content

� Server responds with
requested content

� Client and server close
connection (usually)

Current version is HTTP/1.1
� RFC 2616, June, 1999.

Web
client

(browser)

8

Web Content
Web servers return content to clients

� content: a sequence of bytes with an associated MIME
(Multipurpose Internet Mail Extensions) type

Example MIME types
� t ext / ht ml HTML document

� t ext / pl ai n Unformatted text

� appl i cat i on/ post scr i pt Postcript document

� i mage/ gi f Binary image encoded in GIF format

� i mage/ j peg Binary image encoded in JPEG

format

Page 5

9

Static and Dynamic Content
The content returned in HTTP responses can be either

static or dynamic.
� Static content: content stored in files and retrieved in

response to an HTTP request
� Examples: HTML files, images, audio clips.

� Dynamic content: content produced on-the-fly in response to
an HTTP request
� Example: content produced by a program executed by the

server on behalf of the client.

Bottom line: All Web content is associated with a file
that is managed by the server.

10

URLs
Each file managed by a server has a unique name called a

URL (Universal Resource Locator)

URLs for static content:
� ht t p: / / www. cs. cmu. edu: 80/ i ndex. ht ml

� ht t p: / / www. cs. cmu. edu/ i ndex. ht ml

� ht t p: / / www. cs. cmu. edu
� Identifies a file called i ndex. ht ml , managed by a Web server at

www. cs. cmu. edu that is listening on port 80.

URLs for dynamic content:
� ht t p: / / www. cs. cmu. edu: 8000/ cgi - bi n/ adder ?15000&213

� Identifies an executable file called adder , managed by a Web
server at www. cs. cmu. edu that is listening on port 8000, that
should be called with two argument strings: 15000 and 213.

Page 6

11

How Clients and Servers Use URLs
Example URL: ht t p: / / www. aol . com: 80/ i ndex. ht ml

Clients use prefix (ht t p: / / www. aol . com: 80) to infer:
� What kind of server to contact (Web server)
� Where the server is (www. aol . com)

� What port it is listening on (80)

Servers use suffix (/ i ndex. ht ml) to:
� Determine if request is for static or dynamic content.

� No hard and fast rules for this.
� Convention: executables reside in cgi - bi n directory

� Find file on file system.
� Initial “ / ” in suffix denotes home directory for requested

content.
� Minimal suffix is “ / ” , which all servers expand to some default

home page (e.g., i ndex. ht ml).

12

Anatomy of an HTTP Transaction
uni x> telnet www.aol.com 80 Client: open connection to server
Tr yi ng 205. 188. 146. 23. . . Telnet prints 3 lines to the terminal
Connect ed t o aol . com.
Escape char act er i s ' ^] ' .
GET / HTTP/ 1. 1 Client: request line
host : www. aol . com Client: required HTTP/1.1 HOST header

Client: empty line terminates headers.
HTTP/ 1. 0 200 OK Server: response line
MI ME- Ver si on: 1. 0 Server: followed by five response headers
Dat e: Mon, 08 Jan 2001 04: 59: 42 GMT
Ser ver : Navi Ser ver / 2. 0 AOLser ver / 2. 3. 3
Cont ent - Type: t ext / ht ml Server: expect HTML in the response body
Cont ent - Lengt h: 42092 Server: expect 42,092 bytes in the resp body

Server: empty line (“\r\n”) terminates hdrs
<ht ml > Server: first HTML line in response body
. . . Server: 766 lines of HTML not shown.
</ ht ml > Server: last HTML line in response body
Connect i on c l osed by f or ei gn host . Server: closes connection
uni x> Client: closes connection and terminates

Page 7

13

HTTP Requests

HTTP request is a request line, followed by zero or
more request headers

Request line: <met hod> <ur i > <ver si on>
� <ver si on> is HTTP version of request (HTTP/ 1. 0 or

HTTP/ 1. 1)

� <ur i > is typically URL for proxies, URL suffix for servers.

� <met hod> is either GET, POST, OPTI ONS, HEAD, PUT,
DELETE, or TRACE.

14

HTTP Requests (cont)
HTTP methods:

� GET: Retrieve static or dynamic content
� Arguments for dynamic content are in URI
� Workhorse method (99% of requests)

� POST: Retrieve dynamic content
� Arguments for dynamic content are in the request body

� OPTI ONS: Get server or file attributes

� HEAD: Like GET but no data in response body

� PUT: Write a file to the server!

� DELETE: Delete a file on the server!

� TRACE: Echo request in response body
� Useful for debugging.

Page 8

15

HTTP Requests (cont)
Request headers: <header name>: <header dat a>

� Provide additional information to the server.

Major differences between HTTP/1.1 and HTTP/1.0
� HTTP/1.0 uses a new connection for each transaction.

� HTTP/1.1 also supports persistent connections
� multiple transactions over the same connection
� Connect i on: Keep- Al i ve

� HTTP/1.1 requires HOST header
� Host : k i t t yhawk. cmcl . cs. cmu. edu

� HTTP/1.1 adds additional support for caching

16

HTTP Responses
HTTP response is a response line followed by zero or

more response headers.

Response line:

<ver si on> <st at us code> <st at us msg>
� <version> is HTTP version of the response.
� <status code> is numeric status.
� <status msg> is corresponding English text.

� 200 OK Request was handled without error
� 403 Forbidden Server lacks permission to access file
� 404 Not found Server couldn’t find the file.

Response headers: <header name>: <header dat a>
� Provide additional information about response
� Cont ent - Type: MIME type of content in response body.
� Cont ent - Lengt h: Length of content in response body.

Page 9

17

GET Request to Apache Server
From IE Browser

GET / t est . ht ml HTTP/ 1. 1
Accept : * / *
Accept - Language: en- us
Accept - Encodi ng: gz i p, def l at e
User - Agent : Mozi l l a/ 4. 0 (compat i bl e; MSI E 4. 01; Wi ndows 98)
Host : eur o. ecom. cmu. edu
Connect i on: Keep- Al i ve
CRLF (\ r \ n)

18

GET Response From Apache Server

HTTP/ 1. 1 200 OK
Dat e: Thu, 22 Jul 1999 04: 02: 15 GMT
Ser ver : Apache/ 1. 3. 3 Ben- SSL/ 1. 28 (Uni x)
Last - Modi f i ed: Thu, 22 Jul 1999 03: 33: 21 GMT
ETag: " 48bb2- 4f - 37969101"
Accept - Ranges: byt es
Cont ent - Lengt h: 79
Keep- Al i ve: t i meout =15, max=100
Connect i on: Keep- Al i ve
Cont ent - Type: t ext / ht ml
CRLF
<ht ml >
<head><t i t l e>Test page</ t i t l e></ head>
<body>
<h1>Test page</ h1>
</ ht ml >

Page 10

19

Serving Dynamic Content

Client Server

Client sends request to
server.

If request URI contains the
string “ / cgi - bi n” , then
the server assumes that
the request is for
dynamic content.

GET / cgi - bi n/ env. pl HTTP/ 1. 1

20

Serving Dynamic Content (cont)

Client Server
The server creates a child

process and runs the
program identified by the
URI in that process

env. pl

f or k/ exec

Page 11

21

Serving Dynamic Content (cont)

Client ServerThe child runs and
generates the dynamic
content.

The server captures the
content of the child and
forwards it without
modification to the client

env. pl

Content

Content

22

Issues in Serving Dynamic Content

How does the client pass program
arguments to the server?

How does the server pass these
arguments to the child?

How does the server pass other
info relevant to the request to
the child?

How does the server capture the
content produced by the child?

These issues are addressed by the
Common Gateway Interface
(CGI) specification.

Client Server

Content

Content

Request

Create

env. pl

Page 12

23

CGI

Because the children are written according to the CGI
spec, they are often called CGI programs.

Because many CGI programs are written in Perl, they
are often called CGI scripts.

However, CGI really defines a simple standard for
transferring information between the client
(browser), the server, and the child process.

24

add.com:
THE Internet addition portal!

Ever need to add two numbers together and you just
can’t find your calculator?

Try Dr. Dave’s addition service at “ add.com: THE
Internet addition portal!”
� Takes as input the two numbers you want to add together.

� Returns their sum in a tasteful personalized message.

After the IPO we’ll expand to multiplication!

Page 13

25

The add.com Experience
input URL

Output page

host port CGI program args

26

Serving Dynamic Content With GET

Question: How does the client pass arguments to the
server?

Answer: The arguments are appended to the URI

Can be encoded directly in a URL typed to a browser
or a URL in an HTML link
� ht t p: / / add. com/ cgi - bi n/ adder ?1&2

� adder is the CGI program on the server that will do the
addition.

� argument list starts with “ ?”

� arguments separated by “ &”

� spaces represented by “ +” or “ %20”

Can also be generated by an HTML form
<f or m met hod=get act i on=" ht t p: / / add. com/ cgi - bi n/ post adder " >

Page 14

27

Serving Dynamic Content With GET

URL:
� ht t p: / / add. com/ cgi - bi n/ adder ?1&2

Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

The answer is: 1 + 2 = 3

Thanks for visiting! Tell your friends.

28

Serving Dynamic Content With GET

Question: How does the server pass these
arguments to the child?

Answer: In environment variable QUERY_STRING
� A single string containing everything after the “ ?”
� For add.com: QUERY_STRI NG= “ 1&2”

/ * chi l d code t hat accesses t he ar gument l i s t * /
i f ((buf = get env(" QUERY_STRI NG")) == NULL) {

exi t (1) ;
}

/ * ext r act ar g1 and ar g2 f r om buf and conver t * /
. . .
n1 = at oi (ar g1) ;
n2 = at oi (ar g2) ;

Page 15

29

Serving Dynamic Content With GET

Question: How does the server pass other info relevant
to the request to the child?

Answer: In a collection of environment variables
defined by the CGI spec.

30

Some CGI Environment Variables

General
� SERVER_SOFTWARE

� SERVER_NAME

� GATEWAY_I NTERFACE (CGI version)

Request-specific
� SERVER_PORT

� REQUEST_METHOD (GET, POST, etc)

� QUERY_STRI NG(contains GET args)

� REMOTE_HOST (domain name of client)

� REMOTE_ADDR (IP address of client)

� CONTENT_TYPE (for POST, type of data in message body, e.g.,
t ext / ht ml)

� CONTENT_LENGTH (length in bytes)

Page 16

31

Some CGI Environment Variables

In addition, the value of each header of type type
received from the client is placed in environment
variable HTTP_type
� Examples:

� HTTP_ACCEPT

� HTTP_HOST

� HTTP_USER_AGENT (any “ -” is changed to “ _”)

32

Serving Dynamic Content With GET
Question: How does the server capture the content produced by the

child?

Answer: The child generates its output on st dout . Server uses dup2
to redirect st dout to its connected socket.
� Notice that only the child knows the type and size of the content. Thus

the child (not the server) must generate the corresponding headers.

/ * chi l d gener at es t he r esul t st r i ng * /
spr i nt f (cont ent , " Wel come t o add. com: THE I nt er net addi t i on por t al \

<p>The answer i s : %d + %d = %d\
<p>Thanks f or v i s i t i ng! \ r \ n" ,

n1, n2, n1+n2) ;

/ * chi l d gener at es t he header s and dynami c cont ent * /
pr i nt f (" Cont ent - l engt h: %d\ r \ n" , s t r l en(cont ent)) ;
pr i nt f (" Cont ent - t ype: t ext / ht ml \ r \ n") ;
pr i nt f (" \ r \ n") ;
pr i nt f (" %s" , cont ent) ;

Page 17

33

Serving Dynamic Content With GET
bass> . / t i ny 8000
GET / cgi - bi n/ adder ?1&2 HTTP/ 1. 1
Host : bass. cmcl . cs. cmu. edu: 8000
<CRLF>

ki t t yhawk> t el net bass 8000
Tr yi ng 128. 2. 222. 85. . .
Connect ed t o BASS. CMCL. CS. CMU. EDU.
Escape char act er i s ' ^] ' .
GET / cgi - bi n/ adder ?1&2 HTTP/ 1. 1
Host : bass. cmcl . cs. cmu. edu: 8000
<CRLF>
HTTP/ 1. 1 200 OK
Ser ver : Ti ny Web Ser ver
Cont ent - l engt h: 102
Cont ent - t ype: t ext / ht ml
<CRLF>
Wel come t o add. com: THE I nt er net addi t i on por t al .
<p>The answer i s : 1 + 2 = 3
<p>Thanks f or v i s i t i ng!
Connect i on c l osed by f or ei gn host .
k i t t yhawk>

HTTP request received by
Tiny Web server

HTTP request sent by client

HTTP response generated by
the server
HTTP response generated by
the CGI program

34

Proxies

A proxy is an intermediary between a client and an
origin server.
� To the client, the proxy acts like a server.

� To the server, the proxy acts like a client.

Client Proxy Origin
Server

HTTP request HTTP request

HTTP responseHTTP response

Page 18

35

Why Proxies?

Can perform useful functions as requests and
responses pass by
� Examples: Caching, logging, anonymization

Client
A

Proxy
cache

Origin
Server

Request f oo. ht ml

Request f oo. ht ml

f oo. ht ml

f oo. ht ml

Client
B

Request f oo. ht ml

f oo. ht ml

Fast inexpensive local network

Slower more
expensive

global network

36

For More Information

Study the Tiny Web server described in your text
� Tiny is a sequential Web server.

� Serves static and dynamic content to real browsers.
� text files, HTML files, GIF and JPEG images.

� 220 lines of commented C code.

� Also comes with an implementation of the CGI script for the
add.com addition portal.

