CSCE 230J
Computer Organization

Network Programming

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Drs. Bryant and
O'Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Topics
mProgrammer’s view of the Internet
(review)
mSockets interface
m\Writing clients and servers

A Client-Server Transaction

Every network application is based on the client-server
model:

m A server process and one or more client processes
= Server manages some resource.
= Server provides service by manipulating resource for clients.

1. Client sends request
Client N\~ Server ~———
process /A process Resource
4. Client 2. Server

response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses.
u 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names.
m 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate
with a process on another Internet host over a
connection.

1. IP Addresses

32-bit IP addresses are stored in an IP address struct
= [P addresses are always stored in memory in network byte
order (big-endian byte order)
= True in general for any integer transferred in a packet header
from one machine to another.
e E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {

unsigned int s_addr; /* network byte order (big-endian) */
b

Handy network byte-order conversion functions:
htonl : convertlong int from host to network byte order.

htons: convertshort int from hostto network byte order.
ntohl : convertlong int from network to host byte order.
ntohs: convertshort int from network to host byte order.

Page 1

2. Domain Naming System (DNS)

The Internet maintains a mapping between IP addresses
and domain names in a huge worldwide distributed
database called DNS.

= Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures:

/* DNS host entry structure */
struct hostent {

char *h_nane; /* official domain name of host */

char **h_al i ases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */

int h_l ength; /* length of an address, in bytes */

char **h_addr_list; /* null-terninated array of in_addr structs */

b

Functions for retrieving host entries from DNS:
= get host byname: query key is a DNS domain name.
= get host byaddr: query key is an IP address.

Clients

Examples of client programs
=» Web browsers, ftp, tel net, ssh

How does a client find the server?
m The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)
= The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server process
that performs that service.
m Examples of well know ports
® Port 7: Echo server
® Port 23: Telnet server
® Port 25: Mail server
® Port 80: Web server

3. Internet Connections

Clients and servers communicate by sending streams
of bytes over connections.

Connections are point-to-point, full-duplex (2-way
communication), and reliable.

Server socket address
208.216.181.15:80

Client socket address
128.2.194.242:51213

" Server
(port 80)

Client

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server host address
208.216.181.15

Client host address
128.2.194.242

Note: 80 is a well-known port
associated with Web servers

Note: 51213 is an
ephemeral port allocated
by the kernel

8

Using Ports to Identify Services

Server host 128.2.194.242

Client host

Service request for
128.2.194.242:80
(i.e., the Web server)

Web server
(port 80)

Kernel

Service request for
128.2.194.242:7
(i.e., the echo server)

Kernel

Echo server
(port 7)

10

Servers

Servers are long-running processes (daemons).
= Created at boot-time (typically) by the init process (process 1)
= Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-known
port associated with a particular service.

Port 7: echo server

Port 23: telnet server

Port 25: mail server

Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

Server Examples

Web server (port 80)
= Resource: files/compute cycles (CGI programs)

m Service: retrieves files and runs CGI programs on behalf of
the client

FTP server (20, 21)
= Resource: files
m Service: stores and retrieve files

See/ et c/ services fora
comprehensive list of the
services available on a
Linux machine.

Telnet server (23)
= Resource: terminal
= Service: proxies a terminal on the server machine

Mail server (25)
m Resource: email “spool” file
= Service: stores mail messages in spool file

Page 2

Sockets Interface

Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Internet applications.

Based on client/server programming model.

Overview of the Sockets Interface

Client

socket

Server

Connection

rio_witen
rio_readlineb rio_witen

open_listenfd
open_clientfd

Await connection
request from
next client

14

Socket Address Structures

Generic socket address:
= For address arguments to connect, bi nd, and accept .

u Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

struct sockaddr {
unsi gned short
char

1

sa_fanily;
sa_data[14] ;

/* protocol
/* address data.

famly */
*/

Internet-specific socket address:

= Must cast (sockaddr _in *)to (sockaddr *)for connect,
bi nd, and accept .

struct sockaddr_in {
unsi gned short sin_fanmily; /* address famly (always AF_I NET) */
unsi gned short sin_port; /* port numin network byte order */
struct in_addr sin_addr; /* 1P addr in network byte order */
unsi gned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
b

16

13

Sockets

What is a socket?

m To the kernel, a socket is an endpoint of communication.
= To an application, a socket is a file descriptor that lets the
application read/write from/to the network.
® Remember: All Unix I/O devices, including networks, are
modeled as files.

Clients and servers communicate with each by reading
from and writing to socket descriptors.

The main distinction between regular file /0 and socket
1/0 is how the application “opens” the socket
descriptors.

15

Echo Client Main Routine

#include "csapp. h"
/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
int clientfd, port;
char *host, buf[MAXLI NE] ;
rio_t rio;
host = argv[1];
port = atoi(argv[2]);
clientfd = Open_clientfd(host, port);
Rio_readinitb(&io, clientfd);
while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_witen(clientfd, buf, strlen(buf));
Ri o_readlineb(&io, buf, MAXLINE);
Fputs(buf, stdout);
Close(clientfd);
exit(0);
} 17

Echo Client: open_clientfd

int open_clientfd(char *hostname,

int port)

This function opens a
connection from the client to
the server at host nane: port

int clientfd;
struct hostent *hp;
struct sockaddr_in serveraddr;

if ((clientfd
return -1;

socket (AF_I NET, SOCK_STREAM 0)) < 0)
/* check errno for cause of error */

/* Fill in the server's IP address and port */
if ((hp = gethostbynane(hostnane)) NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_famly = AF_I NET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr,

serveraddr.sin_port = htons(port);

hp->h_l ength) ;

/* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
return -1;

return clientfd;

Page 3

Echo Client: open_clientfd
(socket)

socket creates a socket descriptor on the client.

m AF_| NET: indicates that the socket is associated with Internet

protocols.

m SOCK_STREAM selects a reliable byte stream connection.

nt clientfd; /* socket descriptor */

if ((clientfd = socket (AF_I NET, SOCK_STREAM 0)) < 0)
return -1; /* check errno for cause of error */

(nore)

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.

= Client process suspends (blocks) until the connection is created.
m After resuming, the client is ready to begin exchanging messages

with the server via Unix I/O calls on descriptor sockf d.

int clientfd; /* socket descriptor */
struct sockaddr_in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

return -1;
return clientfd,

if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

Echo Client: open_clientfd
(get host bynane)

The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server's |P address */

/* fill in the server's |P address and port */
if ((hp = gethostbynane(hostnane)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_fam |y = AF_I NET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_|ength);

serveraddr.sin_port = htons(port);

20
Echo Server: Main Routine
int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddr p;
port = atoi(argv[1]); /* the server listens on a port passed
on the conmand line */
listenfd = open_listenfd(port);
while (1) {
clientlen = sizeof (clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
hp = Gethost byaddr ((const char *)&clientaddr.sin_addr.s_addr,
si zeof (clientaddr.sin_addr.s_addr), AF_INET);
haddrp = inet_ntoa(clientaddr.sin_addr);
printf("server connected to % (%)\n", hp->h_name, haddrp);
echo(connfd);
C ose(connfd);
}
}
22

21
int open_listenfd(int port)
int listenfd, optval=1;
struct sockaddr_in serveraddr;
/* Create a socket descriptor */
if ((listenfd = socket (AF_I NET, SOCK_STREAM 0)) < 0)
return -1;
/* Elimnates "Address already in use" error from bind.
it (setsockopt(listenfd, SOL_SOCKET, SO REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;
(nore)
23

Echo Server: open_l i stenfd (cont)

/* Listenfd will be an endpoint for all requests to port
on any | P address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_fam |y = AF_I NET;
serveraddr. si n_addr.s_addr = htonl (1 NADDR_ANY) ;
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ < 0)
return -1;

return listenfd;

Page 4

Echo Server: open_| i stenfd
(socket)

socket creates a socket descriptor on the server.

= AF_| NET: indicates that the socket is associated with Internet
protocols.

m SOCK_STREAM selects a reliable byte stream connection.

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */

if ((listenfd = socket(AF_I NET, SOCK_STREAM 0)) < 0)
return -1;

25

Echo Server: open_| i stenfd
(initialize socket address)

Next, we initialize the socket with the server’s Internet
address (IP address and port)

struct sockaddr_in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any | P address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_fanily = AF_I NET;

serveraddr. si n_addr.s_addr = htonl (1 NADDR_ANY) ;

serveraddr.sin_port = htons((unsigned short)port);

IP addr and port stored in network (big-endian) byte order

= htonl () converts longs from host byte order to network byte
order.

= ht ons() convers shorts from host byte order to network byte
order.

27

Echo Server: open_| i stenfd
(set sockopt)

The socket can be given some attributes.

/* Eliminates "Address already in use" error frombind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO REUSEADDR,

(const void *)&optval , sizeof(int)) < 0)
return -1;

Handy trick that allows us to rerun the server
immediately after we kill it.

= Otherwise we would have to wait about 15 secs.
= Eliminates “Address already in use” error from bi nd() .

Strongly suggest you do this for all your servers to
simplify debugging.

26

Echo Server: open_| i st enfd
(listen)

| i st enindicates that this socket will accept
connection (connect) requests from clients.

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ < 0)
return -1;
return listenfd;

We’'re finally ready to enter the main server loop that
accepts and processes client connection requests.

29

Page 5

Echo Server: open_| i stenfd
(bi nd)

bi nd associates the socket with the socket address we
just created.

int listenfd;

/* listening socket */
struct sockaddr_in serveraddr;

/* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any | P address for this host */

if (bind(listenfd, (SA *)&serveraddr,
return -1;

si zeof (serveraddr)) < 0)

28

Echo Server: Main Loop

The server loops endlessly, waiting for connection
requests, then reading input from the client, and
echoing the input back to the client.

main() {
/* create and configure the |istening socket */
while(1) {
/* Accept(): wait for a connection request */
1* echo():

read and echo input lines fromclient til EOF */
/* Close(): close the connection */

}

}

30

Echo Server: accept

accept () blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);

connfd = Accept (listenfd, (SA *)&clientaddr, &clientlen);

accept returns a connected descriptor (connf d) with
the same properties as the listening descriptor
(I'i stenfd)

= Returns when the connection between client and server is
created and ready for I/O transfers.

= All /O with the client will be done via the connected socket.
accept also fills in client’s IP address.

31

Echo Server: accept lllustrated

listenfd(3) 1. Server blocks in accept,
waiting for connection
request on listening

descriptor | i st enfd.

clientfd

Connection I stenfd(3)
request

2. Client makes connection
request by calling and blocking in
connect .

clientfd

3. Server returns connf d from

I'i stenfd(3)
accept . Client returns from
Server connect . Connection is now
STTentfd connfd(4) established between clientfd

and connf d.

32

Connected vs. Listening Descriptors

Listening descriptor
= End point for client connection requests.
= Created once and exists for lifetime of the server.

Connected descriptor
= End point of the connection between client and server.

= A new descriptor is created each time the server accepts a
connection request from a client.

= Exists only as long as it takes to service client.

Why the distinction?
m Allows for concurrent servers that can communicate over
many client connections simultaneously.
® E.g., Each time we receive a new request, we fork a child to
handle the request.

33

Echo Server: Identifying the Client

The server can determine the domain name and IP
address of the client.

struct hostent *hp;
char *haddrp;

/* pointer to DNS host entry */
/* pointer to dotted decimal string */

hp = Get host byaddr ((const char *)&clientaddr.sin_addr.s_addr,

si zeof (clientaddr.sin_addr.s_addr), AF_INET);
haddrp = inet_ntoa(clientaddr.sin_addr);
printf("server connected to % (%)\n", hp->h_name, haddrp);
34

Echo Server: echo

The server uses RIO to read and echo text lines until
EOF (end-of-file) is encountered.

m EOF notification caused by client calling
close(clientfd).

= IMPORTANT: EOF is a condition, not a particular data byte.

voi d echo(int connfd)

size_t n;
char buf [MAXLI NE] ;
rio_t rio;

Ri o_readinitb(&io, connfd);

while((n = Rio_readlineb(&io, buf, MAXLINE)) != 0) {
printf("server received % bytes\n", n);
Rio_writen(connfd, buf, n);

35

Testing Servers Using t el net

Thetel net program is invaluable for testing servers
that transmit ASCII strings over Internet connections
= Our simple echo server
= Web servers
= Mail servers

Usage:
= uni x> tel net <host> <portnunber>

m Creates a connection with a server running on <host > and
listening on port <por t nunber >.

36

Page 6

Testing the Echo Server With t el net

bass> echoserver 5000

server established connection wth KI TTYHAWK. CMCL (128. 2. 194. 242)
server received 5 bytes: 123

server established connection with Kl TTYHAWK. CMCL (128. 2. 194. 242)
server received 8 bytes: 456789

ki ttyhawk> tel net bass 5000
Trying 128.2.222.85. ..

Connected to BASS. CMCL. CS. CMJ. EDU.
Escape character is '7]'.

123

123

Connection closed by foreign host.
ki ttyhawk> tel net bass 5000
Trying 128.2.222.85...

Connected to BASS. CMCL. CS. CMJ. EDU.
Escape character is '*]".

456789
456789
Connection closed by foreign host.
ki ttyhawk>
37
For More Information
W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1,
Second Edition, Prentice Hall, 1998.
m THE network programming bible.
Complete versions of the echo client and server are
developed in the text.
= Available from csapp. cs. cnu. edu
= You should compile and run them for yourselves to see how
they work.
m Feel free to borrow any of this code.
39

Running the Echo Client and Server

bass> echoserver 5000
server received 4 bytes: 123

server received 7 bytes: 456789

ki ttyhawk> echoclient bass 5000
Pl ease enter nsg: 123
Echo from server: 123

ki ttyhawk> echoclient bass 5000
Pl ease enter nsg: 456789

Echo from server: 456789

ki tt yhawk>

server established connection with KI TTYHAWK. CMCL (128. 2. 194. 242)

server established connection with KI TTYHAWK. CMCL (128. 2. 194. 242)

38

Page 7

