CSCE 230J
Computer Organization

System-Level I/O

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

m Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Page 1

Topics

mUnix I/O

mRobust reading and writing

mReading file metadata

mSharing files
ml/O redirection
mStandard 1/O

A Typical Hardware System

CPU chip

register file

ALU

system bus

JC

memory bus

Vs
. 1/10
bus interface <::> bridge

main
memory

1

<

] L]

M

1L

]

UsB graphics
controller adapter
mousekeyboard monitor

disk

controller

3
disk

Expansion slots for

other devices such
as network adapters.

Page 2

Reading a Disk Sector: Step 1

CPU chip

register file

JC

<\I|§|">ALU

bus interface

LN

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

\'_

main
memory

ﬁ 1/0 bus

< [[L — >
usB graphics disk
controller adapter controller
mousekeyboard monitor <>
disk

Reading a Disk Sector: Step 2

CPU chip

register file

JC

g ALU

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

R

main
I memory

<

|

0 £
UsB graphics digk
controller adapter contgoller
mousekeyboard monitor —
disk

Page 3

Reading a Disk Sector: Step 3

CPU chip
; il When the DMA transfer completes, the
register file disk controller notifies the CPU with an
|::> ALU interrupt (i.e., asserts a special “interrupt”
C: pin on the CPU)
. main
s meriace [| K| man

N\
o

< — — I/0 bus >
R |

UsB graphics disk
controller adapter controller
mousekeyboard monitor <
Unix Files
A Unix file is a sequence of m bytes:
mB,B,.....,B,....B,

All 1/O devices are represented as files:
m /dev/sda2 (/usr disk partition)
m/dev/tty2 (terminal)

Even the kernel is represented as a file:
m / dev/ knem (kernel memory image)
m/proc (kernel data structures)

Page 4

Unix File Types

Regular file
m Binary or text file.
m Unix does not know the difference!

Directory file
m A file that contains the names and locations of other files.

Character special and block special files
m Terminals (character special) and disks (block special)

FIFO (named pipe)
m A file type used for interprocess comunication

Socket

m A file type used for network communication between
processes

Unix 1/O

The elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
® open() and cl ose()

m Changing the current file position (seek)
® | seek (not discussed)

m Reading and writing a file
e read() andwite()

10

Page 5

Opening Files

Opening a file informs the kernel that you are getting
ready to access that file.

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O RDONLY)) < 0) {
perror(“open”);
exit(1l);

}

Returns a small identifying integer file descriptor
m fd == -1indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:

m 0: standard input
m 1: standard output
m 2: standard error

11

Closing Files

Closing a file informs the kernel that you are finished
accessing that file.

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(“close”);
exit(1l);

}

Closing an already closed file is arecipe for disaster in

threaded programs (more on this later)

Moral: Always check return codes, even for seemingly

benign functions such as cl ose()

12

Page 6

Reading Files

Reading afile copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /* file descriptor */
i nt nbytes; /* nunber of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes fromfile fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(“read”);
exit(1);

}

Returns number of bytes read from file f d into buf
m nbytes < 0 indicates that an error occurred.

m short counts (nbyt es < si zeof (buf)) are possible and
are not errors!

13

Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];

int fd; /* file descriptor */
int nbytes; /* nunber of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes frombuf to file fd */
if ((nbytes = wite(fd, buf, sizeof(buf)) < 0) {
perror(“wite”);
exit(1l);
}

Returns number of bytes written from buf to file f d.
m nbytes < 0 indicates that an error occurred.
m As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address buf to file f d

14

Page 7

Unix I/O Example

Copying standard input to standard output one byte at a
time.

#i ncl ude "csapp. h"

int nain(void)
{

char c;

whi | e(Read(STDI N _FILENO, &c, 1) != 0)
Wite(STDOUT_FI LENO, &c, 1);
exit(0);
}

Note the use of error handling wrappers for read and
write (Appendix B).

15

Dealing with Short Counts

Short counts can occur in these situations:
m Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust I/O) package from your textbook’s
csapp. c file (Appendix B).

16

Page 8

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in
applications such as network programs that are subject to short
counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
erio_readnandrio_witen

m Buffered input of binary data and text lines
e rio_readlinebandrio_readnb
® Cleans up some problems with Stevens’s readl i ne and r eadn
functions.
® Unlike the Stevens routines, the buffered RIO routines are thread-
safe and can be interleaved arbitrarily on the same descriptor.

Download from

http://csapp. cs. cnu. edu/ public/ code. ht m
http://csapp. cs. crmu. edu/ public/ics/ code/incl ude/ csapp. h
http://csapp. cs. crru. edu/ public/ics/ code/ src/csapp. c

17

Unbuffered RIO Input and Output

Same interface as Unixread and wite

Especially useful for transferring data on network
sockets

#i ncl ude “csapp. h”

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_witen(nt fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (ri o_r eadn only), -1 on error

m ri o_readn returns short count only it encounters EOF.
mrio_witenneverreturns ashort count.

m Callstorio readnandrio_witencan beinterleaved
arbitrarily on the same descriptor.

18

Page 9

Implementation of ri o_readn

/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

size_t nleft = n;
ssi ze_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handl er return */

nread = 0; /* and call read() again */
el se
return -1; /* errno set by read() */
else if (nread == 0)
br eak; /* ECF */
nleft -= nread;

buf p += nread;

return (n - nleft); /* return >= 0 */

19
Buffered RIO Input Functions
Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer
#i ncl ude “csapp. h”
void rio_readinitb(rio_t *rp, int fd);
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);
Return: num. bytes read if OK, 0 on EOF, -1 on error
mrio_readlinebreads atext line of up to maxl en bytes from
file f d and stores the line in usr buf .
® Especially useful for reading text lines from network sockets.
m rio_readnb reads up to n bytes from file f d.
m Callstorio_readlinebandrio_readnb can be interleaved
arbitrarily on the same descriptor.
® Warning: Don't interleave with calls tori o_r eadn
20

Page 10

RIO Example

Copying the lines of a text file from standard input to

standard output.

#i ncl ude "csapp. h"

int main(int argc, char **argv)

{
int n;
rio_t rio;
char buf [MAXLI NE] ;
Ri o_readi nitb(&io, STDI N_FILENO);
while((n = Rio_readlineb(&io, buf, MAXLINE)) != 0)

Ri o_writen(STDOUT_FI LENO, buf, n);

exit(0);

}

21
File Metadata
Metadata is data about data, in this case file data.
Maintained by kernel, accessed by users with the st at
and f st at functions.
/* Metadata returned by the stat and fstat functions */
struct stat {
dev_t st _dev; /* device */
ino_t st _i no; /* inode */
node_t st _node; /* protection and file type */
nlink_t st _nli nk; /* nunber of hard links */
uid_t st _uid; /* user |ID of owner */
gid_t st_gid; /* group | D of owner */
dev_t st _rdev; /* device type (if inode device) */
of f _t st _si ze; /* total size, in bytes */
unsi gned | ong st_bl ksize; /* blocksize for filesystem|/O */
unsi gned | ong st_bl ocks; /* nunber of blocks allocated */
time_t st _atine; /* tinme of last access */
time_t st_nting; /* tine of last nodification */
time_t st_cting; /* tine of last change */
¥
22

Page 11

Example of Accessing File Metadata

#i ncl ude "csapp. h"

/* statcheck.c - Querying and manipulating a file’'s neta data */

int main (int argc, char **argv) bass> ./statcheck statcheck.c
{ type: regular, read: yes
struct stat stat: bass> chnod 000 statcheck.c
char *type, *readok; bass> ./statcheck statcheck.c
type: regular, read: no

Stat (argv[1l], &stat);
if (S_ISREQ(stat.st_node)) /* file type*/
type = "regular";
else if (S_ISDR(stat.st_node))
type = "directory";
el se
type = "other";

readok = "yes";
el se
readok = "no";

printf("type: %, read: %\n", type, readok);

if ((stat.st_mpde & S IRUSR)) /* OK to read?*/

exit(0);
}
23
How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdo — File access|
e EIEE Filesize || G2
fd 3 refcnt=1 File type struct
fd 4 ~ : :
File B (disk
;1le B (dis _— " File accesg
File pos F.ile size
refcnt =1 File type
24

Page 12

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries
m E.g., Calling open twice with the same fi | ename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A =
fdo —+—— AFile access
fd 1 7 - —
fd 2 File pos File size
fd3 refcnt=1 File type
fd 4 N : :
File B
File pos
refcnt=1
25
A child process inherits its parent’s open files. Here is
the situation immediately after a f or k
Descriptor Open file table v-node table
tables (shared by (shared by
all processes) all processes)
Parent's table File A -
fd 0 / —— "File access
fd 1] - —
fd 2 File pos F_lle size
fd 3 refcnt=2 File type
fd 4 ~ : :
Child's table File B
o > — " File access
Ig; File pos F.ile size
fd 3 refcnt=2 File type
fd 4 : :
26

Page 13

/O Redirection

Question: How does a shell implement I/O redirection?
uni x> | s > foo.txt

Answer: By calling the dup2(ol df d, newf d) function
m Copies (per-process) descriptor table entry ol df d to entry

newf d
Descriptor table Descriptor table
before dup2(4, 1) after dup2(4, 1)
fd 0 fd 0
fd 1 a fd 1 b
@2 > 4
fd 3 fd 3
fd 4 b fd 4 b

27

/O Redirection Example

Before calling dup2(4, 1), stdout (descriptor 1) points

to a terminal and descriptor 4 points to an open disk
file.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fdo = File access
stdout fd1 —] - : :
stderr fd2 File pos F.Ile size
fd 3 refcnt =1 File type
fd 4 ~ : g

File B -
I __— " File access

File size
File type

File pos
refcnt=1

28

Page 14

I/O Redirection Example (cont)

After calling dup2(4, 1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
_Filea R
fd 0 ' ot File access,
fd1
' i 1 File size !
fd 2 File pos |
fd 3 irefent=0 | : File type |
e[S I T
\ File B / -
File access|
File pos F.I|ESIZE
refcnt =2 File type

29

Standard I/O Functions

The C standard library (I i bc. a) contains a collection of
higher-level standard 1/O functions
m Documented in Appendix B of K&R.

Examples of standard 1/O functions:
m Opening and closing files (f open and f cl ose)
m Reading and writing bytes (fread and fwrite)
m Reading and writing text lines (f get s and f put s)
m Formatted reading and writing (f scanf and f printf)

30

Page 15

Standard I/O Streams

Standard 1/0 models open files as streams
m Abstraction for afile descriptor and a buffer in memory.
C programs begin life with three open streams (defined
in stdio. h)
m st di n (standard input)
m st dout (standard output)
m st derr (standard error)

#i ncl ude <stdi o. h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, “Hello, world\n”);

}
31
Buffering in Standard I/O
Standard 1/O functions use buffered I/O
printf(“h");
printf(“e”);
printf(“l”);
printf(“l”);
printf(“o0”);
buf printf(“\n”);
\ vy Vv
Lhlelllllofw]| . .|.1]
fflush(stdout);
wite(l, buf += 6, 6);
32

Page 16

Standard I/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix st race program:

#i ncl ude <stdi o. h>

int main()
{
printf
printf
printf
printf
printf
printf

("
("
("
("
("

o Tae=

~—— — — —

1

("\n");
fflush(stdout);
exit(0);

linux> strace ./hello

wite(l, "hello\n", 6...)

_exit(0)

execve("./hello", ["hello"],

[+ ...

33

Unix I/O vs. Standard I/O vs. RIO

Standard I/0 and RIO are implemented using low-level

Unix

I/O.

fopen fdopen
fread fwite

-]

fscanf fprintf
sscanf sprintf |, C application program
fgets fputs S
fflush fseek \
fcl ose | Standard I/O RIO
functions functions
\Zfie?e Irzzcejk P Unix I/O functions
st at cl ose (accessed via system calls)

rio_readn
rio_writen
rio_readinith
rio_readlineb
ri o_readnb

Which ones should you use in your programs?

34

Page 17

Pros and Cons of Unix I/O

Pros

m Unix I/O is the most general and lowest overhead form of 1/O.
o All other I/0O packages are implemented using Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

Cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard 1/0 and
RIO packages.

35

Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the number of
read and wi t e system calls.

m Short counts are handled automatically.

Cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

36

Page 18

Pros and Cons of Standard 1/O (cont)

Restrictions on streams:

m Restriction 1: input function cannot follow output function
without intervening call to f f | ush, f seek, f set pos, or
rew nd.

o Latter three functions all use | seek to change file position.

m Restriction 2: output function cannot follow an input
function with intervening call to f seek, f set pos, or r ewi nd.

Restriction on sockets:
m You are not allowed to change the file position of a socket.

37

Pros and Cons of Standard 1/O (cont)

Workaround for restriction 1:
m Flush stream after every output.

Workaround for restriction 2:

m Open two streams on the same descriptor, one for reading
and one for writing:

FILE *fpin, *fpout;

fpin = fdopen(sockfd, “r”);
f pout = fdopen(sockfd, “w');

m However, this requires you to close the same descriptor
twice:

fclose(fpin);
fclose(fpout);

m Creates a deadly race in concurrent threaded programs!
38

Page 19

Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard 1/O functions.

When to use standard 1/0?
m When working with disk or terminal files.

When to use raw Unix I/O
m When you need to fetch file metadata.
m In rare cases when you need absolute highest performance.

When to use RIO?
m When you are reading and writing network sockets or pipes.
m Never use standard I/O or raw Unix I/O on sockets or pipes.

39

For Further Information

The Unix bible:

m W. Richard Stevens, Advanced Programming in the Unix
Environment, Addison Wesley, 1993.

m Somewhat dated, but still useful.

Stevens is arguably the best technical writer ever.
m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

40

Page 20

