
Page 1

System-Level I/O

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

� I have modified them and added new
slides.

3

Topics

�Unix I/O
�Robust reading and writing
�Reading file metadata
�Sharing files
�I/O redirection
�Standard I/O

4

A Typical Hardware System

main
memory

I/O
bridge

bus interface

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

5

Reading a Disk Sector: Step 1

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

6

Reading a Disk Sector: Step 2

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access (DMA)
transfer into main memory.

Page 2

7

Reading a Disk Sector: Step 3

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor

disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

8

Unix Files
A Unix file is a sequence of m bytes:

� B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:
� / dev/ sda2 (/ usr disk partition)

� / dev/ t t y2 (terminal)

Even the kernel is represented as a file:
� / dev/ kmem (kernel memory image)

� / pr oc (kernel data structures)

9

Unix File Types
Regular file

� Binary or text file.

� Unix does not know the difference!

Directory file
� A file that contains the names and locations of other files.

Character special and block special files
� Terminals (character special) and disks (block special)

FIFO (named pipe)
� A file type used for interprocess comunication

Socket
� A file type used for network communication between

processes

10

Unix I/O

The elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):
� Opening and closing files

� open() and cl ose()

� Changing the current file position (seek)
� l seek (not discussed)

� Reading and writing a file
� r ead() and wr i t e()

11

Opening Files
Opening a file informs the kernel that you are getting

ready to access that file.

Returns a small identifying integer file descriptor
� f d == - 1 indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:
� 0: standard input
� 1: standard output
� 2: standard error

i nt f d; / * f i l e descr i pt or * /

i f ((f d = open(“ / et c / host s” , O_RDONLY)) < 0) {
per r or (“ open”) ;
ex i t (1) ;

}

12

Closing Files

Closing a file informs the kernel that you are finished
accessing that file.

Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

Moral: Always check return codes, even for seemingly
benign functions such as cl ose()

i nt f d; / * f i l e descr i pt or * /
i nt r et val ; / * r et ur n val ue * /

i f ((r et val = c l ose(f d)) < 0) {
per r or (“ c l ose”) ;
ex i t (1) ;

}

Page 3

13

Reading Files
Reading a file copies bytes from the current file

position to memory, and then updates file position.

Returns number of bytes read from file f d into buf
� nbyt es < 0 indicates that an error occurred.
� short counts (nbyt es < si zeof (buf)) are possible and

are not errors!

char buf [512] ;
i nt f d; / * f i l e descr i pt or * /
i nt nbyt es; / * number of byt es r ead * /

/ * Open f i l e f d . . . * /
/ * Then r ead up t o 512 byt es f r om f i l e f d * /
i f ((nbyt es = r ead(f d, buf , s i zeof (buf))) < 0) {

per r or (“ r ead”) ;
ex i t (1) ;

}

14

Writing Files
Writing a file copies bytes from memory to the current file

position, and then updates current file position.

Returns number of bytes written from buf to file f d.
� nbyt es < 0 indicates that an error occurred.

� As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address buf to file f d

char buf [512] ;
i nt f d; / * f i l e descr i pt or * /
i nt nbyt es; / * number of byt es r ead * /

/ * Open t he f i l e f d . . . * /
/ * Then wr i t e up t o 512 byt es f r om buf t o f i l e f d * /
i f ((nbyt es = wr i t e(f d, buf , s i zeof (buf)) < 0) {

per r or (“ wr i t e”) ;
ex i t (1) ;

}

15

Unix I/O Example

Copying standard input to standard output one byte at a
time.

Note the use of error handling wrappers for read and
write (Appendix B).

#i nc l ude " csapp. h"

i nt mai n(voi d)
{

char c;

whi l e(Read(STDI N_FI LENO, &c, 1) ! = 0)
Wr i t e(STDOUT_FI LENO, &c, 1) ;

ex i t (0) ;
}

16

Dealing with Short Counts

Short counts can occur in these situations:
� Encountering (end-of-file) EOF on reads.

� Reading text lines from a terminal.

� Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
� Reading from disk files (except for EOF)

� Writing to disk files.

How should you deal with short counts in your code?
� Use the RIO (Robust I/O) package from your textbook’s

csapp. c file (Appendix B).

17

The RIO Package
RIO is a set of wrappers that provide efficient and robust I/O in

applications such as network programs that are subject to short
counts.

RIO provides two different kinds of functions
� Unbuffered input and output of binary data

� r i o_r eadn and r i o_wr i t en

� Buffered input of binary data and text lines
� r i o_r eadl i neb and r i o_r eadnb
� Cleans up some problems with Stevens’s r eadl i ne and r eadn

functions.
� Unlike the Stevens routines, the buffered RIO routines are thread-

safe and can be interleaved arbitrarily on the same descriptor.

Download from
ht t p: / / csapp. cs. cmu. edu/ publ i c/ code. ht ml
ht t p: / / csapp. cs. cmu. edu/ publ i c/ i cs/ code/ i nc l ude/ csapp. h
ht t p: / / csapp. cs. cmu. edu/ publ i c/ i cs/ code/ sr c/ csapp. c

18

Unbuffered RIO Input and Output

Same interface as Unix r ead and wr i t e

Especially useful for transferring data on network
sockets

� r i o_r eadn returns short count only it encounters EOF.

� r i o_wr i t en never returns a short count.

� Calls to r i o_r eadn and r i o_wr i t en can be interleaved
arbitrarily on the same descriptor.

#i nc l ude “ csapp. h”

ss i ze_t r i o_r eadn(i nt f d, voi d * usr buf , s i ze_t n) ;
ss i ze_t r i o_wr i t en(nt f d, voi d * usr buf , s i ze_t n) ;

Return: num. bytes transferred if OK, 0 on EOF (r i o_r eadn only), -1 on error

Page 4

19

Implementation of r i o_r eadn
/ *

* r i o_r eadn - r obust l y r ead n byt es (unbuf f er ed)
* /

ss i ze_t r i o_r eadn(i nt f d, voi d * usr buf , s i ze_t n)
{

s i ze_t nl ef t = n;
ss i ze_t nr ead;
char * buf p = usr buf ;

whi l e (nl ef t > 0) {
i f ((nr ead = r ead(f d, buf p, nl ef t)) < 0) {

i f (er r no == EI NTR) / * i nt er r upt ed by s i g
handl er r et ur n * /

nr ead = 0; / * and cal l r ead() agai n * /
el se

r et ur n - 1; / * er r no set by r ead() * /
}
el se i f (nr ead == 0)

br eak; / * EOF * /
nl ef t - = nr ead;
buf p += nr ead;

}
r et ur n (n - nl ef t) ; / * r et ur n >= 0 * /

}

20

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

� r i o_r eadl i neb reads a text line of up to maxl en bytes from
file f d and stores the line in usr buf .
� Especially useful for reading text lines from network sockets.

� r i o_r eadnb reads up to n bytes from file f d.
� Calls to r i o_r eadl i neb and r i o_r eadnb can be interleaved

arbitrarily on the same descriptor.
� Warning: Don’t interleave with calls to r i o_r eadn

#i nc l ude “ csapp. h”

voi d r i o_r eadi ni t b(r i o_t * r p, i nt f d) ;

ss i ze_t r i o_r eadl i neb(r i o_t * r p, voi d * usr buf , s i ze_t maxl en) ;
ss i ze_t r i o_r eadnb(r i o_t * r p, voi d * usr buf , s i ze_t n) ;

Return: num. bytes read if OK, 0 on EOF, -1 on error

21

RIO Example

Copying the lines of a text file from standard input to
standard output.

#i nc l ude " csapp. h"

i nt mai n(i nt ar gc, char * * ar gv)
{

i nt n;
r i o_t r i o;
char buf [MAXLI NE] ;

Ri o_r eadi ni t b(&r i o, STDI N_FI LENO) ;
whi l e((n = Ri o_r eadl i neb(&r i o, buf , MAXLI NE)) ! = 0)

Ri o_wr i t en(STDOUT_FI LENO, buf , n) ;
ex i t (0) ;

}

22

File Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the st at
and f st at functions.

/ * Met adat a r et ur ned by t he st at and f s t at f unct i ons * /
s t r uct s t at {

dev_t s t _dev; / * devi ce * /
i no_t s t _i no; / * i node * /
mode_t s t _mode; / * pr ot ect i on and f i l e t ype * /
nl i nk_t s t _nl i nk; / * number of har d l i nks * /
ui d_t s t _ui d; / * user I D of owner * /
gi d_t s t _gi d; / * gr oup I D of owner * /
dev_t s t _r dev; / * devi ce t ype (i f i node devi ce) * /
of f _t s t _s i ze; / * t ot al s i ze, i n byt es * /
unsi gned l ong st _bl ks i ze; / * bl ocks i ze f or f i l esyst em I / O * /
unsi gned l ong st _bl ocks; / * number of bl ocks al l ocat ed * /
t i me_t s t _at i me; / * t i me of l ast access * /
t i me_t s t _mt i me; / * t i me of l ast modi f i cat i on * /
t i me_t s t _ct i me; / * t i me of l ast change * /

} ;

23

Example of Accessing File Metadata
/ * s t at check. c - Quer y i ng and mani pul at i ng a f i l e’ s met a dat a * /
#i nc l ude " csapp. h"

i nt mai n (i nt ar gc, char * * ar gv)
{

s t r uct s t at st at ;
char * t ype, * r eadok;

St at (ar gv[1] , &st at) ;
i f (S_I SREG(st at . s t _mode)) / * f i l e t ype* /

t ype = " r egul ar " ;
el se i f (S_I SDI R(st at . s t _mode))

t ype = " di r ect or y" ;
el se

t ype = " ot her " ;
i f ((st at . s t _mode & S_I RUSR)) / * OK t o r ead?* /

r eadok = " yes" ;
el se

r eadok = " no" ;

pr i nt f (" t ype: %s, r ead: %s\ n" , t ype, r eadok) ;
ex i t (0) ;

}

bass> . / s t at check st at check. c
t ype: r egul ar , r ead: yes
bass> chmod 000 st at check. c
bass> . / s t at check st at check. c
t ype: r egul ar , r ead: no

24

How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk

files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
r ef cnt =1

...

File pos
r ef cnt =1

...

st der r
st dout

st di n File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
st at
struct

Page 5

25

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries
� E.g., Calling open twice with the same f i l ename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
r ef cnt =1

...

File pos
r ef cnt =1

...

File access

...

File size

File type

File A

File B

26

How Processes Share Files

A child process inherits its parent’s open files. Here is
the situation immediately after a f or k

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
r ef cnt =2

...

File pos
r ef cnt =2

...
Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B

27

I/O Redirection
Question: How does a shell implement I/O redirection?

uni x> l s > f oo. t x t

Answer: By calling the dup2(ol df d, newf d) function
� Copies (per-process) descriptor table entry ol df d to entry

newf d

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4, 1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4, 1)

28

I/O Redirection Example
Before calling dup2(4, 1) , stdout (descriptor 1) points

to a terminal and descriptor 4 points to an open disk
file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
r ef cnt =1

...

File pos
r ef cnt =1

...

st der r
st dout

st di n File access

...

File size

File type

File access

...

File size

File type

File A

File B

29

I/O Redirection Example (cont)

After calling dup2(4, 1) , stdout is now redirected to the
disk file pointed at by descriptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
r ef cnt =0

...

File pos
r ef cnt =2

...

File access

...

File size

File type

File access

...

File size

File type

File A

File B

30

Standard I/O Functions

The C standard library (l i bc. a) contains a collection of
higher-level standard I/O functions
� Documented in Appendix B of K&R.

Examples of standard I/O functions:
� Opening and closing files (f open and f c l ose)

� Reading and writing bytes (f r ead and f wr i t e)

� Reading and writing text lines (f get s and f put s)

� Formatted reading and writing (f scanf and f pr i nt f)

Page 6

31

Standard I/O Streams

Standard I/O models open files as streams
� Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (defined
in st di o. h)
� st di n (standard input)

� st dout (standard output)

� st der r (standard error)

#i nc l ude <st di o. h>
ext er n FI LE * st di n; / * s t andar d i nput (descr i pt or 0) * /
ext er n FI LE * st dout ; / * s t andar d out put (descr i pt or 1) * /
ext er n FI LE * st der r ; / * s t andar d er r or (descr i pt or 2) * /

i nt mai n() {
f pr i nt f (s t dout , “ Hel l o, wor l d\ n”) ;

}

32

Buffering in Standard I/O

Standard I/O functions use buffered I/O

pr i nt f (“ h”) ;

h e l l o \n . .

pr i nt f (“ e”) ;
pr i nt f (“ l ”) ;

pr i nt f (“ l ”) ;

pr i nt f (“ o”) ;
pr i nt f (“ \ n”) ;

f f l ush(st dout) ;

buf

wr i t e(1, buf += 6, 6) ;

33

Standard I/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix st r ace program:

l i nux> st r ace . / hel l o
execve(" . / hel l o" , [" hel l o"] , [/ * . . . * /]) .
. . .
wr i t e(1, " hel l o\ n" , 6. . .) = 6
. . .
_exi t (0) = ?

#i nc l ude <st di o. h>

i nt mai n()
{

pr i nt f (" h") ;
pr i nt f (" e") ;
pr i nt f (" l ") ;
pr i nt f (" l ") ;
pr i nt f (" o") ;
pr i nt f (" \ n") ;
f f l ush(st dout) ;
ex i t (0) ;

}

34

Unix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are implemented using low-level
Unix I/O.

Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

f open f dopen
f r ead f wr i t e
f scanf f pr i nt f
sscanf spr i nt f
f get s f put s
f f l ush f seek
f c l ose

open r ead
wr i t e l seek
st at c l ose

r i o_r eadn
r i o_wr i t en
r i o_r eadi ni t b
r i o_r eadl i neb
r i o_r eadnb

RIO
functions

35

Pros and Cons of Unix I/O

Pros
� Unix I/O is the most general and lowest overhead form of I/O.

� All other I/O packages are implemented using Unix I/O
functions.

� Unix I/O provides functions for accessing file metadata.

Cons
� Dealing with short counts is tricky and error prone.

� Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

� Both of these issues are addressed by the standard I/O and
RIO packages.

36

Pros and Cons of Standard I/O

Pros:
� Buffering increases efficiency by decreasing the number of

r ead and wr i t e system calls.

� Short counts are handled automatically.

Cons:
� Provides no function for accessing file metadata

� Standard I/O is not appropriate for input and output on
network sockets

� There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

Page 7

37

Pros and Cons of Standard I/O (cont)

Restrictions on streams:
� Restriction 1: input function cannot follow output function

without intervening call to f f l ush, f seek , f set pos , or
r ewi nd.
� Latter three functions all use l seek to change file position.

� Restriction 2: output function cannot follow an input
function with intervening call to f seek , f set pos , or r ewi nd.

Restriction on sockets:
� You are not allowed to change the file position of a socket.

38

Pros and Cons of Standard I/O (cont)

Workaround for restriction 1:
� Flush stream after every output.

Workaround for restriction 2:
� Open two streams on the same descriptor, one for reading

and one for writing:

� However, this requires you to close the same descriptor
twice:

� Creates a deadly race in concurrent threaded programs!

FI LE * f pi n, * f pout ;

f pi n = f dopen(sockf d, “ r ”) ;
f pout = f dopen(sockf d, “ w”) ;

f c l ose(f pi n) ;
f c l ose(f pout) ;

39

Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.
� Many C programmers are able to do all of their work using

the standard I/O functions.

When to use standard I/O?
� When working with disk or terminal files.

When to use raw Unix I/O
� When you need to fetch file metadata.
� In rare cases when you need absolute highest performance.

When to use RIO?
� When you are reading and writing network sockets or pipes.
� Never use standard I/O or raw Unix I/O on sockets or pipes.

40

For Further Information

The Unix bible:
� W. Richard Stevens, Advanced Programming in the Unix

Environment, Addison Wesley, 1993.

� Somewhat dated, but still useful.

Stevens is arguably the best technical writer ever.
� Produced authoritative works in:

� Unix programming
� TCP/IP (the protocol that makes the Internet work)
� Unix network programming
� Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

