
Page 1

Exceptional Control Flow
Part II

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

� I have modified them and added new
slides.

Page 2

3

Topics

�Process Hierarchy
�Shells
�Signals
�Nonlocal jumps

4

ECF Exists at All Levels of a System

Exceptions
� Hardware and operating system kernel

software

Concurrent processes
� Hardware timer and kernel software

Signals
� Kernel software

Non-local jumps
� Application code

Previous Lecture

This Lecture

Page 3

5

The World of Multitasking

System Runs Many Processes Concurrently
� Process: executing program

� State consists of memory image + register values + program
counter

� Continually switches from one process to another
� Suspend process when it needs I/O resource or timer event

occurs
� Resume process when I/O available or given scheduling priority

� Appears to user(s) as if all processes executing
simultaneously
� Even though most systems can only execute one process at a

time
� Except possibly with lower performance than if running alone

6

Programmer’s Model of Multitasking

Basic Functions
� f or k() spawns new process

� Called once, returns twice
� exi t () terminates own process

� Called once, never returns
� Puts it into “ zombie” status

� wai t () and wai t pi d() wait for and reap terminated
children

� execl () and execve() run a new program in an existing
process
� Called once, (normally) never returns

Programming Challenge
� Understanding the nonstandard semantics of the functions
� Avoiding improper use of system resources

� E.g. “ Fork bombs” can disable a system.

Page 4

7

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. ht t pd

i ni t [1]

8

Unix Startup: Step 1

i ni t [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs / sbi n/ i ni t

1. Pushing reset button loads the PC with the address of a small
bootstrap program.

2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., / boot / vml i nux)
4. Boot block program passes control to kernel.
5. Kernel handcrafts the data structures for process 0.

Process 0 forks child process 1

Page 5

9

Unix Startup: Step 2

i ni t [1]

[0]

get t yDaemons
e.g. f t pd, ht t pd

/ et c/ i ni t t ab
i ni t forks and execs
daemons per
/ et c/ i ni t t ab, and forks
and execs a get t y program
for the console

10

Unix Startup: Step 3

i ni t [1]

[0]

The get t y process
execs a l ogi n
program

l ogi n

Page 6

11

Unix Startup: Step 4

i ni t [1]

[0]

l ogi n reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another get t y

t csh

12

Shell Programs
A shell is an application program that runs programs on

behalf of the user.
� sh – Original Unix Bourne Shell

� csh – BSD Unix C Shell, t csh – Enhanced C Shell

� bash –Bourne-Again Shell

i nt mai n()
{

char cmdl i ne[MAXLI NE] ;

whi l e (1) {
/ * r ead * /
pr i nt f (" > ") ;
f get s(cmdl i ne, MAXLI NE, s t di n) ;
i f (f eof (st di n))

exi t (0) ;

/ * eval uat e * /
eval (cmdl i ne) ;

}
}

Execution is a sequence of
read/evaluate steps

Page 7

13

Simple Shell eval Function
voi d eval (char * cmdl i ne)
{

char * ar gv[MAXARGS] ; / * ar gv f or execve() * /
i nt bg; / * shoul d t he j ob r un i n bg or f g? * /
pi d_t pi d; / * pr ocess i d * /

bg = par sel i ne(cmdl i ne, ar gv) ;
i f (! bui l t i n_command(ar gv)) {

i f ((pi d = For k()) == 0) { / * chi l d r uns user j ob * /
i f (execve(ar gv[0] , ar gv, envi r on) < 0) {

pr i nt f (" %s: Command not f ound. \ n" , ar gv[0]) ;
exi t (0) ;

}
}

i f (! bg) { / * par ent wai t s f or f g j ob t o t er mi nat e * /
i nt st at us;
i f (wai t pi d(pi d, &st at us, 0) < 0)

uni x_er r or (" wai t f g: wai t pi d er r or ") ;
}
el se / * ot her wi se, don’ t wai t f or bg j ob * /

pr i nt f (" %d %s" , pi d, cmdl i ne) ;
}

}

14

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs.

But what about background jobs?
� Will become zombies when they terminate.

� Will never be reaped because shell (typically) will not
terminate.

� Creates a memory leak that will eventually crash the kernel
when it runs out of memory.

Solution: Reaping background jobs requires a
mechanism called a signal.

Page 8

15

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.
� Kernel abstraction for exceptions and interrupts.
� Sent from the kernel (sometimes at the request of another

process) to a process.
� Different signals are identified by small integer ID’s
� The only information in a signal is its ID and the fact that it

arrived.

Timer signalTerminateSI GALRM14

Segmentation violationTerminate & DumpSI GSEGV11

17

9

2

ID

Child stopped or terminatedIgnoreSI GCHLD

Kill program (cannot override or ignore)TerminateSI GKI LL

Interrupt from keyboard (ct l - c)TerminateSI GI NT

Corresponding EventDefault ActionName

16

Signal Concepts

Sending a signal
� Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process.

� Kernel sends a signal for one of the following reasons:
� Kernel has detected a system event such as divide-by-zero

(SIGFPE) or the termination of a child process (SIGCHLD)
� Another process has invoked the ki l l system call to explicitly

request the kernel to send a signal to the destination process.

Page 9

17

Signal Concepts (cont)

Receiving a signal
� A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal.

� Three possible ways to react:
� Ignore the signal (do nothing)
� Terminate the process.
� Catch the signal by executing a user-level function called a

signal handler.
» Akin to a hardware exception handler being called in

response to an asynchronous interrupt.

18

Signal Concepts (cont)

A signal is pending if it has been sent but not yet
received.
� There can be at most one pending signal of any particular type.

� Important: Signals are not queued
� If a process has a pending signal of type k, then subsequent

signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.
� Blocked signals can be delivered, but will not be received until

the signal is unblocked.

A pending signal is received at most once.

Page 10

19

Signal Concepts

Kernel maintains pendi ng and bl ocked bit vectors in
the context of each process.
� pendi ng – represents the set of pending signals

� Kernel sets bit k in pendi ng whenever a signal of type k is
delivered.

� Kernel clears bit k in pendi ng whenever a signal of type k is
received

� bl ocked – represents the set of blocked signals
� Can be set and cleared by the application using the

si gpr ocmask function.

20

Process Groups
Every process belongs to exactly

one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pi d=10
pgi d=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pi d=20
pgi d=20

pi d=32
pgi d=32

pi d=40
pgi d=40

pi d=21
pgi d=20

pi d=22
pgi d=20

get pgr p() – Return process
group of current process

set pgi d() – Change process
group of a process

Page 11

21

Sending Signals with ki l l Program

ki l l program sends
arbitrary signal to a
process or process
group

Examples
� ki l l –9 24818

� Send SI GKI LL t o
pr ocess 24818

� ki l l –9 –24817
� Send SI GKI LL t o

ever y pr ocess i n
pr ocess gr oup
24817.

l i nux> . / f or ks 16
l i nux> Chi l d1: pi d=24818 pgr p=24817
Chi l d2: pi d=24819 pgr p=24817

l i nux> ps
PI D TTY TI ME CMD

24788 pt s/ 2 00: 00: 00 t csh
24818 pt s/ 2 00: 00: 02 f or ks
24819 pt s/ 2 00: 00: 02 f or ks
24820 pt s/ 2 00: 00: 00 ps
l i nux> ki l l - 9 - 24817
l i nux> ps

PI D TTY TI ME CMD
24788 pt s/ 2 00: 00: 00 t csh
24823 pt s/ 2 00: 00: 00 ps
l i nux>

22

Sending Signals from the Keyboard
Typing ctrl-c (ctrl-z) sends a SIGTERM (SIGTSTP) to every job in

the foreground process group.
� SIGTERM – default action is to terminate each process
� SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pi d=10
pgi d=10

Foreground
process group 20

Background
process
group 32

Background
process
group 40

pi d=20
pgi d=20

pi d=32
pgi d=32

pi d=40
pgi d=40

pi d=21
pgi d=20

pi d=22
pgi d=20

Page 12

23

Example of ct r l - c and ct r l - z

l i nux> . / f or ks 17
Chi l d: pi d=24868 pgr p=24867
Par ent : pi d=24867 pgr p=24867

<t yped ct r l - z>
Suspended
l i nux> ps a

PI D TTY STAT TI ME COMMAND
24788 pt s/ 2 S 0: 00 - usr / l ocal / bi n/ t csh - i
24867 pt s/ 2 T 0: 01 . / f or ks 17
24868 pt s/ 2 T 0: 01 . / f or ks 17
24869 pt s/ 2 R 0: 00 ps a
bass> f g
. / f or ks 17
<t yped ct r l - c>
l i nux> ps a

PI D TTY STAT TI ME COMMAND
24788 pt s/ 2 S 0: 00 - usr / l ocal / bi n/ t csh - i
24870 pt s/ 2 R 0: 00 ps a

24

Sending Signals with ki l l Function
voi d f or k12()
{

pi d_t pi d[N] ;
i nt i , chi l d_st at us;
f or (i = 0; i < N; i ++)

i f ((pi d[i] = f or k()) == 0)
whi l e(1) ; / * Chi l d i nf i ni t e l oop * /

/ * Par ent t er mi nat es t he chi l d pr ocesses * /
f or (i = 0; i < N; i ++) {

pr i nt f (" Ki l l i ng pr ocess %d\ n" , pi d[i]) ;
k i l l (pi d[i] , SI GI NT) ;

}

/ * Par ent r eaps t er mi nat ed chi l dr en * /
f or (i = 0; i < N; i ++) {

pi d_t wpi d = wai t (&chi l d_st at us) ;
i f (WI FEXI TED(chi l d_st at us))

pr i nt f (" Chi l d %d t er mi nat ed wi t h exi t st at us %d\ n" ,
wpi d, WEXI TSTATUS(chi l d_st at us)) ;

el se
pr i nt f (" Chi l d %d t er mi nat ed abnor mal l y \ n" , wpi d) ;

}
}

Page 13

25

Receiving Signals

Suppose kernel is returning from exception handler
and is ready to pass control to process p.

Kernel computes pnb = pendi ng & ~bl ocked
� The set of pending nonblocked signals for process p

If (pnb == 0)
� Pass control to next instruction in the logical flow for p.

Else
� Choose least nonzero bit k in pnb and force process p to

receive signal k.

� The receipt of the signal triggers some action by p
� Repeat for all nonzero k in pnb.

� Pass control to next instruction in logical flow for p.

26

Default Actions

Each signal type has a predefined default action, which
is one of:
� The process terminates

� The process terminates and dumps core.

� The process stops until restarted by a SIGCONT signal.

� The process ignores the signal.

Page 14

27

Installing Signal Handlers

The si gnal function modifies the default action
associated with the receipt of signal si gnum:
� handl er _t * s i gnal (i nt s i gnum, handl er _t * handl er)

Different values for handl er :
� SIG_IGN: ignore signals of type si gnum

� SIG_DFL: revert to the default action on receipt of signals of
type si gnum.

� Otherwise, handler is the address of a signal handler
� Called when process receives signal of type si gnum

� Referred to as “ installing” the handler.
� Executing handler is called “ catching” or “ handling” the signal.
� When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal.

28

Signal Handling Example
voi d i nt _handl er (i nt s i g)
{

pr i nt f (" Pr ocess %d r ecei ved s i gnal %d\ n" ,
get pi d() , s i g) ;

exi t (0) ;
}

voi d f or k13()
{

pi d_t pi d[N] ;
i nt i , chi l d_st at us;
s i gnal (SI GI NT, i nt _handl er) ;

. . .
}

l i nux> . / f or ks 13
Ki l l i ng pr ocess 24973
Ki l l i ng pr ocess 24974
Ki l l i ng pr ocess 24975
Ki l l i ng pr ocess 24976
Ki l l i ng pr ocess 24977
Pr ocess 24977 r ecei ved si gnal 2
Chi l d 24977 t er mi nat ed wi t h exi t s t at us 0
Pr ocess 24976 r ecei ved si gnal 2
Chi l d 24976 t er mi nat ed wi t h exi t s t at us 0
Pr ocess 24975 r ecei ved si gnal 2
Chi l d 24975 t er mi nat ed wi t h exi t s t at us 0
Pr ocess 24974 r ecei ved si gnal 2
Chi l d 24974 t er mi nat ed wi t h exi t s t at us 0
Pr ocess 24973 r ecei ved si gnal 2
Chi l d 24973 t er mi nat ed wi t h exi t s t at us 0
l i nux>

Page 15

29

Signal Handler Funkiness
Pending signals are not

queued
� For each signal type,

just have single bit
indicating whether or
not signal is pending

� Even if multiple
processes have sent
this signal

i nt ccount = 0;
voi d chi l d_handl er (i nt si g)
{

i nt chi l d_st at us;
pi d_t pi d = wai t (&chi l d_st at us) ;
ccount - - ;
pr i nt f (" Recei ved s i gnal %d f r om pr ocess %d\ n" ,

s i g, pi d) ;
}

voi d f or k14()
{

pi d_t pi d[N] ;
i nt i , chi l d_st at us;
ccount = N;
s i gnal (SI GCHLD, chi l d_handl er) ;
f or (i = 0; i < N; i ++)

i f ((pi d[i] = f or k()) == 0) {
/ * Chi l d: Exi t * /
ex i t (0) ;

}
whi l e (ccount > 0)

pause() ; / * Suspend unt i l s i gnal occur s * /
}

30

Living With Nonqueuing Signals
Must check for all terminated jobs

� Typically loop with wai t

voi d chi l d_handl er 2(i nt s i g)
{

i nt chi l d_st at us;
pi d_t pi d;
whi l e ((pi d = wai t (&chi l d_st at us)) > 0) {

ccount - - ;
pr i nt f (" Recei ved si gnal %d f r om pr ocess %d\ n" , s i g,

pi d) ;
}

}

voi d f or k15()
{

. . .
s i gnal (SI GCHLD, chi l d_handl er 2) ;
. . .

}

Page 16

31

A Program That Reacts to
Externally Generated Events (ctrl-c)

#i ncl ude <st dl i b. h>
#i ncl ude <st di o. h>
#i ncl ude <si gnal . h>

voi d handl er (i nt s i g) {
pr i nt f (" You t hi nk hi t t i ng ct r l - c wi l l st op t he bomb?\ n") ;
s l eep(2) ;
pr i nt f (" Wel l . . . ") ;
f f l ush(st dout) ;
s l eep(1) ;
pr i nt f (" OK\ n") ;
exi t (0) ;

}

mai n() {
s i gnal (SI GI NT, handl er) ; / * i nst al l s ct l - c handl er * /
whi l e(1) {
}

}

32

A Program That Reacts to Internally
Generated Events
#i ncl ude <st di o. h>
#i ncl ude <si gnal . h>

i nt beeps = 0;

/ * SI GALRM handl er * /
voi d handl er (i nt s i g) {

pr i nt f (" BEEP\ n") ;
f f l ush(st dout) ;

i f (++beeps < 5)
al ar m(1) ;

el se {
pr i nt f (" BOOM! \ n") ;
exi t (0) ;

}
}

mai n() {
s i gnal (SI GALRM, handl er) ;
al ar m(1) ; / * send SI GALRM i n

1 second * /

whi l e (1) {
/ * handl er r et ur ns her e * /

}
}

l i nux> a. out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

Page 17

33

Nonlocal Jumps: set j mp/ l ongj mp

Powerful (but dangerous) user-level mechanism for transferring
control to an arbitrary location.
� Controlled way to break the procedure call/return discipline
� Useful for error recovery and signal handling

i nt set j mp(j mp_buf j)

� Must be called before longjmp
� Identifies a return site for a subsequent longjmp.
� Called once, returns one or more times

Implementation:
� Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf.
� Return 0

34

set j mp/ l ongj mp (cont)

voi d l ongj mp(j mp_buf j , i nt i)

� Meaning:
� return from the set j mp remembered by jump buffer j again...
� …this time returning i instead of 0

� Called after set j mp

� Called once, but never returns

l ongj mp Implementation:
� Restore register context from jump buffer j

� Set %eax (the return value) to i

� Jump to the location indicated by the PC stored in jump buf j .

Page 18

35

set j mp/l ongj mp Example

#i ncl ude <set j mp. h>
j mp_buf buf ;

mai n() {
i f (set j mp(buf) ! = 0) {

pr i nt f (" back i n mai n due t o an er r or \ n") ;
el se

pr i nt f (" f i r st t i me t hr ough\ n") ;
p1() ; / * p1 cal l s p2, whi ch cal l s p3 * /

}
. . .
p3() {

<er r or checki ng code>
i f (er r or)

l ongj mp(buf , 1)
}

36

Putting It All Together: A Program
That Restarts Itself When ct r l - c ’d
#i ncl ude <st di o. h>
#i ncl ude <si gnal . h>
#i ncl ude <set j mp. h>

si gj mp_buf buf ;

voi d handl er (i nt s i g) {
s i gl ongj mp(buf , 1) ;

}

mai n() {
s i gnal (SI GI NT, handl er) ;

i f (! s i gset j mp(buf , 1))
pr i nt f (" st ar t i ng\ n") ;

el se
pr i nt f (" r est ar t i ng\ n") ;

whi l e(1) {
s l eep(1) ;
pr i nt f (" pr ocessi ng. . . \ n") ;

}
}

bass> a. out
st ar t i ng
pr ocessi ng. . .
pr ocessi ng. . .
r est ar t i ng
pr ocessi ng. . .
pr ocessi ng. . .
pr ocessi ng. . .
r est ar t i ng
pr ocessi ng. . .
r est ar t i ng
pr ocessi ng. . .
pr ocessi ng. . .

Ctrl-c

Ctrl-c

Ctrl-c

Page 19

37

Limitations of Nonlocal Jumps

Works within stack discipline
� Can only long jump to environment of function that has been

called but not yet completed
j mp_buf env;

P1()
{

i f (set j mp(env)) {
/ * Long Jump t o her e * /

} el se {
P2() ;

}
}

P2()
{ . . . P2() ; . . . P3() ; }

P3()
{

l ongj mp(env, 1) ;
}

P1

P2

P2

P2

P3

env
P1

Before longjmp

After longjmp

38

Limitations of Long Jumps (cont.)
Works within stack discipline

� Can only long jump to environment of function that has been
called but not yet completed

j mp_buf env;

P1()
{

P2() ; P3() ;
}

P2()
{

i f (set j mp(env)) {
/ * Long Jump t o her e * /

}
}

P3()
{

l ongj mp(env, 1) ;
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Page 20

39

Summary

Signals provide process-level exception handling
� Can generate from user programs

� Can define effect by declaring signal handler

Some caveats
� Very high overhead

� >10,000 clock cycles
� Only use for exceptional conditions

� Don’t have queues
� Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within
process
� Within constraints of stack discipline

