CSCE 230J Computer Organization

Bits and Bytes

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Topics

Why bits?

- Representing information as bits
 - •Binary/Hexadecimal
 - •Byte representations
 - »numbers
 - »characters and strings
 - »Instructions
- Bit-level manipulations
 - •Boolean algebra
 - •Expressing in C

Why Don't Computers Use Base 10?

3

4

Base 10 Number Representation

- That's why fingers are known as "digits"
- Natural representation for financial transactions
 - Floating point number cannot exactly represent \$1.20
- Even carries through in scientific notation
 - 1.5213 X 10⁴

Implementing Electronically

- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.

 C Data Type Compaq int long int char 	Alpna 4 8	Typical 32-bit 4	Intel IA32 4
Iong int	-	-	4
-	8		_
char		4	4
	1	1	1
 short 	2	2	2
 float 	4	4	4
 double 	8	8	8
Iong double	8	8	10/12
• char *	8	4	4
» Or any other point	nter		
» Or any other point	nter		

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

11

Conventions

- Sun's, Mac's are "Big Endian" machines
 Least significant byte has highest address
- Alphas, PC's are "Little Endian" machines
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Boolean Algebra

Boolean Algebra

- 〈{0,1}, |, &, ~, 0, 1〉 forms a "Boolean algebra"
- Or is "sum" operation
- And is "product" operation
- ~ is "complement" operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product

Boolean Algebra ≈ Integer Ring Commutativity $A \mid B = B \mid A$ A + B = B + AA & B = B & AA * B = B * AAssociativity $(A \mid B) \mid C = A \mid (B \mid C)$ (A + B) + C = A + (B + C)(A & B) & C = A & (B & C)(A * B) * C = A * (B * C)Product distributes over sum $A \& (B | C) = (A \& B) | (A \& C) A^* (B + C) = A^* B + B^* C$ Sum and product identities A + 0 = A $A \mid 0 = A$ A * 1 = AA & 1 = A Zero is product annihilator A & 0 = 0A * 0 = 0• Cancellation of negation \sim (\sim A) = A -(-A) = A26

25

Boolean Ring ■ ⟨{0,1}, ^, &, <i>I</i> , 0, 1⟩ ■ Identical to integers mod	Properties of & and ^				
-					
 <i>I</i> is identity operation: <i>I</i>(A) = A 					
A ^ A = 0					
Property	Boolean Ring				
Commutative sum	A ^ B = B ^ A				
Commutative product	A & B = B & A				
 Associative sum 	$(A^{A}B)^{C} = A^{C}(B^{C})$				
 Associative product 	(A & B) & C = A & (B & C)				
Prod. over sum	A & (B ^ C) = (A & B) ^ (B & C)				
0 is sum identity	$A^{0} = A$				
1 is prod. identity	A & 1 = A				
0 is product annihilator	A & 0 = 0				
 Additive inverse 	$A^{A} = 0$				
	28				

Representing & Manipulating Sets

```
Representation
```

■ Width *w* bit vector represents subsets of {0, ..., *w*-1}

`0 :	⊧1 if j ∈ A 1101001 6543210	{ 0, 3, 5, 6 }	
7	1010101 6543210	{ 0, 2, 4, 6 }	
Operati	ons		
■ &	Intersection	01000001	{ 0, 6 }
■	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
■ ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
■ ~	Complement	10101010	{ 1, 3, 5, 7 }

31

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header><section-header><section-header>