Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O’Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.
Topics

■ Why bits?
■ Representing information as bits
 ● Binary/Hexadecimal
 ● Byte representations
 » numbers
 » characters and strings
 » Instructions
■ Bit-level manipulations
 ● Boolean algebra
 ● Expressing in C

Why Don’t Computers Use Base 10?

Base 10 Number Representation

■ That’s why fingers are known as “digits”
■ Natural representation for financial transactions
 ● Floating point number cannot exactly represent $1.20
■ Even carries through in scientific notation
 ● 1.5213 X 10^4

Implementing Electronically

■ Hard to store
 ● ENIAC (First electronic computer) used 10 vacuum tubes / digit
■ Hard to transmit
 ● Need high precision to encode 10 signal levels on single wire
■ Messy to implement digital logic functions
 ● Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation
- Represent 15213\textsubscript{10} as 1110110110110\textsubscript{2}
- Represent 1.20\textsubscript{10} as 1.00110011001100[0011]...\textsubscript{2}
- Represent 1.5213 \times 10^4 as 1.110110110110\textsubscript{2} \times 2^{13}

Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

[Diagram showing binary representation of 0, 1, and 0 with voltage levels 3.3V, 2.8V, 0.5V, 0.0V]

Straightforward implementation of arithmetic functions

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- Binary: \(00000000_2\) to \(11111111_2\)
- Decimal: \(0_{10}\) to \(255_{10}\)
- Hexadecimal: \(00_{16}\) to \(FF_{16}\)
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B\(_{16}\) in C as 0xFA1D37B
 » Or 0xFA1D37B

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address \(1.8 \times 10^{19}\) bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
</tbody>
</table>

Data Representations

Sizes of C Objects (in Bytes)
- C Data Type Compaq Alpha Typical 32-bit Intel IA32
 - int 4 4 4
 - long int 8 4 4
 - char 1 1 1
 - short 2 2 2
 - float 4 4 4
 - double 8 8 8
 - long double 8 8 10/12
 - char * 8 4 4
 » Or any other pointer
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions
- Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address
- Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100 0x101 0x102 0x103</th>
<th>01 23 45 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Endian</td>
<td>0x100 0x101 0x102 0x103</td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>bb 28 00 00 00</td>
<td>cmp %0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00

Examining Data Representations

Code to Print Byte Representation of Data
- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11fffffb8 0x6d
0x11fffffcb9 0x3b
0x11fffffcb8 0x00
0x11fffffcb9 0x00
```

Representing Integers

```c
int A = 15213;
int B = -15213;
long int C = 15213;
```

- **Decimal:** 15213
- **Binary:** 0011 1011 0110 1101
- **Hex:** 3 B 6 D

![Diagram showing representations of integers on Linux/Alpha A, Sun A, Linux c, Alpha c, Sun c](image)

- **Two's complement representation**
 (Covered next lecture)
Representing Pointers

int B = -15213;
int *P = &B;

Alpha Address
Hex: 1 F F F F F C A 0
Binary: 0001 1111 1111 1111 1111 1100 1010 0000

Sun Address
Hex: E F F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Linux Address
Hex: B F F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

Different compilers & machines assign different locations to objects

Representing Floats

Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines
Can see some relation to integer representation, but not obvious
Representing Strings

Strings in C
- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility
- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character(s)!

Machine-Level Code Representation

Encode Program as Sequence of Instructions
- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
- Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings.

Boolean Algebra

Developed by George Boole in 19th Century
- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

<table>
<thead>
<tr>
<th>A & B</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

<table>
<thead>
<tr>
<th>~A</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th>A</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

<table>
<thead>
<tr>
<th>A ^ B</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

\[A \& \sim B \quad \text{Connection when} \quad A \& \sim B \mid \sim A \& B \]
\[= A \wedge B \]

Integer Algebra

Integer Arithmetic

- \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
- \(- \) is additive inverse
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra

Boolean Algebra
- \{0, 1\}, |, &, ~, 0, 1 forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- ~ is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product

Commutativity
\- A | B = B | A
\- A \& B = B \& A
\- A + B = B + A
\- A * B = B * A

Associativity
\- (A | B) | C = A | (B | C)
\- (A \& B) \& C = A \& (B \& C)
\- (A + B) + C = A + (B + C)
\- (A * B) * C = A * (B * C)

Product distributes over sum
\- A \& (B | C) = (A \& B) | (A \& C)
\- A * (B + C) = A * B + B * C

Sum and product identities
\- A | 0 = A
\- A \& 1 = A
\- A + 0 = A
\- A * 1 = A

Zero is product annihilator
\- A \& 0 = 0
\- A * 0 = 0

Cancellation of negation
\- \sim (\sim A) = A
\- \sim (\sim A) = A

Boolean Algebra \approx Integer Ring
Boolean Algebra ≠ Integer Ring

- **Boolean: Sum distributes over product**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A + (B \cdot C) \neq (A + B) \cdot (B + C) \]

- **Boolean: Idempotency**
 \[A \land A = A \quad A + A \neq A \]
 - “A is true” or “A is true” = “A is true”
 \[A \land A = A \quad A + A \neq A \]

- **Boolean: Absorption**
 \[A \land (A \lor B) = A \quad A + (A \cdot B) \neq A \]
 - “A is true” or “A is true and B is true” = “A is true”
 \[A \land (A \lor B) = A \quad A + (A \cdot B) \neq A \]

- **Boolean: Laws of Complements**
 \[A \lor \neg A = 1 \quad A + \neg A \neq 1 \]
 - “A is true” or “A is false”

- **Ring: Every element has additive inverse**
 \[A \lor \neg A \neq 0 \quad A + \neg A = 0 \]

Properties of & and ^

- \(\langle \{0,1\}, ^\land, ^\lor, I, 0, 1 \rangle \)
- Identical to integers mod 2
- \(I \) is identity operation: \(I(A) = A \)
 \[A \land A = 0 \]

Property	**Boolean Ring**
Commutative sum | \(A \land B = B \land A \)
Commutative product | \(A \land B = B \land A \)
Associative sum | \((A \land B) \land C = A \land (B \land C) \)
Associative product | \((A \land B) \land C = A \land (B \land C) \)
Prod. over sum | \(A \land (B \land C) = (A \land B) \land (B \land C) \)
0 is sum identity | \(A \land 0 = A \)
1 is prod. identity | \(A \land 1 = A \)
0 is product annihilator | \(A \land 0 = 0 \)
Additive inverse | \(A \land A = 0 \)
Relations Between Operations

DeMorgan’s Laws

- Express & in terms of |, and vice-versa
 - $A \& B = \sim(\sim A \mid \sim B)$
 - A and B are true if and only if neither A nor B is false
 - $A \mid B = \sim(\sim A \& \sim B)$
 - A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- $A ^ B = (\sim A \& B) \mid (A \& \sim B)$
 - Exactly one of A and B is true
- $A ^ B = (A \mid B) \& (\sim A \& \sim B)$
 - Either A is true, or B is true, but not both

General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

| 01101001 & 01010101 | 01101001 ^ 01010101 | 01101001 ~ 01010101 |
| 01000001 | 01001101 | 00111100 | 10101010 |

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation
- Width \(w \) bit vector represents subsets of \(\{0, \ldots, w-1\} \)
- \(a_j = 1 \) if \(j \in A \)

\[
\begin{array}{cccccccc}
01101001 & & & & & & & \\
76543210 & & & & & & & \\
\end{array}
\]
\(\{0, 3, 5, 6\} \)

\[
\begin{array}{cccccccc}
01010101 & & & & & & & \\
76543210 & & & & & & & \\
\end{array}
\]
\(\{0, 2, 4, 6\} \)

Operations
- \& Intersection
- | Union
- ^ Symmetric difference
- ~ Complement

\[
\begin{array}{cccccccc}
01000001 & & & & & & & \\
\end{array}
\]
\(\{0, 6\} \)

\[
\begin{array}{cccccccc}
01111101 & & & & & & & \\
\end{array}
\]
\(\{0, 2, 3, 4, 5, 6\} \)

\[
\begin{array}{cccccccc}
00111100 & & & & & & & \\
\end{array}
\]
\(\{2, 3, 4, 5\} \)

\[
\begin{array}{cccccccc}
10101010 & & & & & & & \\
\end{array}
\]
\(\{1, 3, 5, 7\} \)

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C
- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)
- \(~0x41 --> 0xBE\)
 \(~01000010_2 --> 10111110_2\)
- \(~0x00 --> 0xFF\)
 \(~00000000_2 --> 11111111_2\)
- \(0x69 & 0x55 --> 0x41\)
 \(01101001_2 & 01010101_2 --> 01000011_2\)
- \(0x69 | 0x55 --> 0x7D\)
 \(01101001_2 | 01010101_2 --> 01111101_2\)
Contrast: Logic Operations in C

Contrast to Logical Operators
- &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)
- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01
- 0x69 && 0x55 --> 0x01
- 0x69 || 0x55 --> 0x01
- p && *p (avoids null pointer access)

Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \[A \oplus A = 0 \]

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;     /* #1 */
    *y = *x ^ *y;     /* #2 */
    *x = *x ^ *y;     /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A(^\oplus)</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A(^\oplus)</td>
<td>(A(^\oplus))(^\oplus) = A</td>
</tr>
<tr>
<td>3</td>
<td>(A(^\oplus))(^\oplus) = A</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Main Points

It’s All About Bits & Bytes
- Numbers
- Programs
- Text

Different Machines Follow Different Conventions
- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis
- Basic form encodes “false” as 0, “true” as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets