CSCE 230J Computer Organization

Bits and Bytes

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

Topics

- Why bits?
- Representing information as bits
 - •Binary/Hexadecimal •Byte representations
 - »numbers
 - »characters and strings
 - »Instructions
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C

Why Don't Computers Use Base 10?

Base 10 Number Representation

- That's why fingers are known as "digits"
- Natural representation for financial transactions
 Floating point number cannot exactly represent \$1.20
- Floating point number cannot exactly represent \$1
 Even carries through in scientific notation
- Even carries through in scientific no
 1.5213 X 104

Implementing Electronically

- Hard to store
- ENIAC (First electronic computer) used 10 vacuum tubes / digit ■ Hard to transmit
- Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 Addition, multiplication, etc.

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Sun's, Mac's are "Big Endian" machines
 Least significant byte has highest address
- Alphas, PC's are "Little Endian" machines
 Least significant byte has lowest address

- ⟨Z, +, *, -, 0, 1⟩ forms a "ring"
- Addition is the "sum" operation
- Multiplication is the "product" operation
- is the additive inverse
- 0 is the identity for sum
- 1 is the identity for product

Boolean Algebra

Boolean Algebra

- ({0,1}, |, &, ~, 0, 1) forms a "Boolean algebra"
- Or is the "sum" operation
- And is the "product" operation
- ~ is the "complement" operation (not additive inverse)
- 0 is the identity for sum
- 1 is the identity for product

Boolean Algebra ≈ Integer Ring Commutativity A | B = B | AA + B = B + AA&B = B&A A * B = B * A Associativity (A | B) | C = A | (B | C)(A + B) + C = A + (B + C)(A & B) & C = A & (B & C)(A * B) * C = A * (B * C)Product distributes over sum A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C Sum and product identities $A \mid 0 = A$ A + 0 = AA & 1 = AA * 1 = A Zero is product annihilator A & 0 = 0A * 0 = 0 Cancellation of negation \sim (\sim A) = A -(-A) = A

