CSCE 230J
Computer Organization

Bits and Bytes

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Topics

sWhy bits?
mRepresenting information as bits
eBinary/Hexadecimal
®Byte representations
»numbers
»characters and strings
»Instructions
mBit-level manipulations
e®Boolean algebra
®Expressing in C

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Why Don’t Computers Use Base 10?

Base 10 Number Representation
= That's why fingers are known as “digits”
= Natural representation for financial transactions
@ Floating point number cannot exactly represent $1.20
= Even carries through in scientific notation
® 1.5213 X 104

Implementing Electronically
= Hard to store
® ENIAC (First electronic computer) used 10 vacuum tubes / digit
= Hard to transmit
@ Need high precision to encode 10 signal levels on single wire
= Messy to implement digital logic functions
® Addition, multiplication, etc.

Binary Representations

Base 2 Number Representation
= Represent 15213, as 11101101101101,
= Represent 1.20,, as 1.0011001100110011[0011]...,
= Represent 1.5213 X 10 as 1.1101101101101, X 213

Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

T a | ;o 1 |
10 L1 “[op>
3.3V —
28V —
05V —
0.0v —

Straightforward implementation of arithmetic functions

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
m Actually implemented with hierarchy of different memory
types
® SRAM, DRAM, disk
® Only allocate for regions actually used by program
= In Unix and Windows NT (and 2000), address space is private
to a particular “process”
® Program being executed
® Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
= Where different program objects should be stored

= Multiple mechanisms: static, stack, and heap
= In any case, all allocation within single virtual address space

Page 1

Encoding Byte Values

Machine Words

Machine Has “Word Size”

m Nominal size of integer-valued data
® Including addresses
m Most current machines are 32 bits (4 bytes)
® Limits addresses to 4GB
® Becoming too small for memory-intensive applications
m High-end systems are 64 bits (8 bytes)
® Potentially address = 1.8 X 10'° bytes
m Machines support multiple data formats
® Fractions or multiples of word size
o Always integral number of bytes

Byte = 8 bits .
y) & o ot®
= Binary 00000000, to 11111111 5 (? (;2:)00
= Decimal: 00 to 255, 1110001
f 2 | 2 [0010
= Hexadecimal 00, to) FFig 5 T5 T 0011
® Base 16 number representation 4 | 4 [0100
® Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ g (53 g %
® Write FA1D37B,¢ in C as OxFA1D37B 7 77 10111
» Or O0xfald37b 818 000
919 001
A [10] 1010
B [11] 1011
C 1211100
D [13] 1101
E [14] 1110
F [15] 1111
7
Word-Oriented Memory
Organization Cenn
g 32-bit 64-bit Bytes Addr
ords Words
0000
Addr
: de 0001
Adgress_es Specify Byte oo 1 o002
ocations Ad:dv 0003
m Address of first byte in 0000 0004
word Addr 0005
= Addresses of successive 0004 || 0006
words differ by 4 (32-bit) or | | [] ooo7
8 (64-bit) || ooos
Addr 0009
0008 Addr 0010
= 0011
0008| [~ | oo12
Addr 0013
0012 0014
0015

Data Representations

Sizes of C Objects (in Bytes)

= C Data Type Compaq Alpha Typical 32-bit Intel 1A32
e int 4 4
® long int 8 4 4
® char 1 1 1
® short 2 2 2
o float 4 4 4
® double 8 8 8
® long double 8 8 10/12
® char * 8 4 4

» Or any other pointer

10

Byte Ordering

How should bytes within multi-byte word be
ordered in memory?

Conventions
m Sun’s, Mac’s are “Big Endian” machines
® Least significant byte has highest address

m Alphas, PC’s are “Little Endian” machines
® L east significant byte has lowest address

11

Byte Ordering Example

Big Endian

m Least significant byte has highest address
Little Endian

= Least significant byte has lowest address
Example

= Variable x has 4-byte representation 0x01234567
= Address given by & is 0x100

Big Endian [0x100] 0x101] 0x102] 0x103]
[T Joif2sTasJer] T 1]
Little Endian

0x100| 0x101| 0x102| 0x103

[67 45 T23Jo1] |]

Page 2

Reading Byte-Reversed Listings

Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop Y%ebx

8048366: 81 ¢3 ab 12 00 00 add $0x12ab, %ebx
804836¢: 83 bb 28 00 ‘{30 00 00 cnpl ;ﬁx0,0xZB(fVebx)

Deciphering Numbers

= Value: 0x12ab
= Pad to 4 bytes: 0x000012ab
= Split into bytes: 00 00 12 ab
= Reverse: ab 12 00 00

13

Examining Data Representations

Code to Print Byte Representation of Data
= Casting pointer to unsi gned char * creates byte array

typedef unsigned char *pointer;
voi d show_bytes(pointer start, int |en)

int i;
for (i =0; i <len; i++)
printf("0x%\t0x% 2x\ n",
start+i, start[i]);
printf("\n");

Printf directives:
Y%p: Print pointer
9%: Print Hexadecimal

14

show byt es Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0x6d
Ox11ffffcb9 0x3b
Ox11iffffcba 0x00
Ox11ffffcbb 0x00

15

Representing Integers

int A= 15213; Decimal: 15213
int B =-15213; Binary: 0011 1011 0110 1101
long int C = 15213; Hex: 3 B 6 D
Linux/Alpha A Sun A Linux C AlphaC SunC
6D
3B
00
00

Li

™~

Two's complement representation
(Covered next lecture)

16

Alpha P

Representing Pointers

int B=-15213;
int *P = &B;

Alpha Address
Hex: 1 F F F F F C A 0
Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

Sun Address

Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100 | Linux P

Linux Address

Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

Different compilers & machines assign different locations to objects

17

Page 3

Representing Floats

Float F = 15213.0;
Linux/AlphaF SunF

|EEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

Can see some relation to integer representation, but not obvious
18

Representing Strings

)) char §[6] = "15213";
Strings in C
= Represented by array of characters

m Each character encoded in ASCII format Linux/Alpha S Sun S

® Standard 7-bit encoding of character set 31 31

o Other encodings exist, but uncommon 35 35

® Character “0" has code 0x30 32 32

» Digiti has code 0x30+i :; g;

= String should be null-terminated 00 00

® Final character =0
Compatibility
= Byte ordering not an issue
e Data are single byte quantities
m Text files generally platform independent
e Except for different conventions of line termination character(s)!

19

Machine-Level Code Representation

Encode Program as Sequence of Instructions
m Each instruction is a simple operation
e Arithmetic operation
® Read or write memory
e Conditional branch
= Instructions encoded as bytes
® Alpha’s, Sun'’s, Mac's use 4 byte instructions
» Reduced Instruction Set Computer (RISC)
® PC's use variable length instructions
» Complex Instruction Set Computer (CISC)
= Different instruction types and encodings for different
machines
® Most code not binary compatible

Programs are Byte Sequences Too!

20

Representing Instructions

int sun(int x, int vy)
{ Alpha sum

return x+y;

o
O
0
c
3

Sun sum

}

= For this example, Alpha &
Sun use two 4-byte
instructions
® Use differing numbers of
instructions in other cases
= PC uses 7 instructions with
lengths 1, 2, and 3 bytes
e Same for NT and for Linux
® NT/ Linux not fully binary
compatible

R EEEEEEEMEE
o|o|o|®| | e|o|d|w|a|o|a

Different machines use totally different instructions and encodings

21

Boolean Algebra

Developed by George Boole in 19th Century

= Algebraic representation of logic
® Encode “True” as 1 and “False” as 0

And Or
m A&B =1 when both A=1 and m A|B =1 when either A=1 or
B=l &0 1 B=1 |]o0 1
0(o o0 0|0 1
1]0 1 1111
Not

Exclusive-Or (Xor)

m A"B = 1 when either A=1 or
B=1, but not both

m ~A =1 when A=0

- ol

N
0

22

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis

= Reason about networks of relay switches
® Encode closed switch as 1, open switch as 0
A&~B

Connection when

A&~B | ~A&B

=A"B

23

Integer Algebra

Integer Arithmetic
m(Z +,* —0,1)forms a“ring”
m Addition is the “sum” operation
= Multiplication is the “product” operation
m — s the additive inverse
m 0 is the identity for sum
m 1is the identity for product

Page 4

Boolean Algebra

Boolean Algebra
= ({0,1}, |, &, ~, 0, 1) forms a “Boolean algebra”
m Or is the “sum” operation
m And is the “product” operation

m ~ s the “complement” operation (not
additive inverse)

m 0 is the identity for sum
m 1 is the identity for product

25

Boolean Algebra # Integer Ring

= Boolean: Sum distributes over product
A|(B&C) = (A|B)&(A|C) A+(B*C)# (A+B)*(B+C)
= Boolean: [dempotency

AlA = A A+AZzA
®“Aistrue” or “Ais true” =“Ais true”
A&A = A A*AZEA
m Boolean: Absorption
A|(A&B) = A A+(A*B)#A

®“Aistrue” or “Ais true and B is true” =“A'is true”

A&(A|B) = A A*(A+B)£A
= Boolean: Laws of Complements
Al~A =1 A+-Azl

®“Ais true” or “Alis false”
= Ring: Every element has additive inverse
Al~A%£0 A+-A=0

27

Boolean Algebra = Integer Ring
= Commutativity
AlB =BJ|A A+B = B+A
A&B =B&A A*B = B*A
m Associativity
(A] B)|C =A|(B]|C) (A+B)+C = A+(B+C)
(A&B)&C = A&(B&C) (A*B)*C = A*(B*C)

= Product distributes over sum
A&((B|C) = (A&B)|(A&C)
= Sum and product identities

A*(B+C) = A*B+B*C

AlO0O=A A+0 =A
A&l =A A*1 =A
m Zero is product annihilator
A&0 =0 A*0 =0
= Cancellation of negation
~(A)=A -(-A) = A

26

Boolean Ring
= ({0,1},7, &, 1,0, 1)
= |dentical to integers mod 2
= /is identity operation: /(A) = A

Properties of & and »

ANA=0
Property Boolean Ring
= Commutative sum A~"B =B"A
» Commutative product A&B = B&A

(A"B)AC = AN(BAC)
(A&B)&C = A& (B&C)
A&(BNC) = (A&B)" (B&C)

= Associative sum
Associative product
Prod. over sum

= 0is sum identity ANO = A
= 1is prod. identity A&l =A
m 0is product annihilator A& 0=0

= Additive inverse AMA =0

28

Relations Between Operations

DeMorgan’s Laws
m Express & in terms of |, and vice-versa
®eA&B = ~(~A|~B)
» A and B are true if and only if neither A nor B is false
®A|B = ~(~A&~B)
» A or B are true if and only if A and B are not both
false

Exclusive-Or using Inclusive Or
®eANB = (~A&B)|(A&~B)
» Exactly one of A and B is true
eA”NB = (A|B)&~(A&B)
» Either A'is true, or B is true, but not both

29

General Boolean Algebras

Operate on Bit Vectors

= Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
91666861 6111iiBL 6O111168 10161618

All of the Properties of Boolean Algebra Apply

30

Page 5

Representing & Manipulating Sets

Representation
= Width w bit vector represents subsets of {0, ..., w-1}

ma=1ifj OA
01101001 {0,3,56}
76543210
01010101 {0,2,4,6}
76543210
Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

31

Bit-Level Operations in C

Operations &, |, ~, " Availablein C
= Apply to any “integral” data type
® long, int, short, char
= View arguments as bit vectors
= Arguments applied bit-wise

Examples (Char data type)
m ~0x41 --> OxBE
~01000001, --> 10111110,
m ~0x00 --> OxFF
~00000000, --> 11111111,
m 0x69 & Ox55 --> 0x41
01101001, & 01010101, --> 01000001,
= 0x69 | 0x55 0x7D
01101001, | 01010101, --> 01111101,

>

32

Contrast: Logic Operations in C

Contrast to Logical Operators
n&&|],!
® View 0 as “False”
® Anything nonzero as “True”
o Always returnOor 1
® Early termination

Examples (char data type)

= 10x41 --> 0x00
= 1 0x00 --> O0x01
m!10x41 --> 0x01
m 0x69 && 0x55 --> 0x01
= 0x69 || Ox55 --> 0x01

= p & *p (avoids null pointer access)

33

Shift Operations

Left Shift: X <<y Argument x| 01100010
= Shift bit-vector x left y positions
® Throw away extra bits on left =<3 00010000
® Fill with 0’s on right Log.>> 2 | 00011000
Right Shift: x >>y Arith. >> 2| 00011000
= Shift bit-vector x right y
positions Argument x| 10100010
o Throw away extra bits on right
. . << 3 00010000
= Logical shift
o Fill with 0's on left Log.>> 2 | 00101000
= Arithmetic shift Arith.>> 2| 11101000

® Replicate most significant bit on
right

e Useful with two’s complement
integer representation

34

Cool Stuff with Xor

» Bitwise Xor is a void funny(int *x, int *y)
form of addition o wo A e I*oH1 %
= With extra property *; _ *i A *51 1% H)
that every value is kY = Ay A Ry J* #3 %/
its own additive) ¥i
inverse
ANA=0
% xy
Begin A B
1 AB B
2 A'B (AB)"B = A
3 (A*B)"A = B A
End B A

35

Main Points

It's All About Bits & Bytes
= Numbers
m Programs
m Text

Different Machines Follow Different Conventions
= Word size
= Byte ordering
= Representations

Boolean Algebra is Mathematical Basis
m Basic form encodes “false” as 0, “true” as 1

= General form like bit-level operations in C
@ Good for representing & manipulating sets

36

Page 6

