Bits and Bytes

Dr. Steve Goddard
goddard@cse.unl.edu

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

Topics

- Why bits?
 - Representing information as bits
 - Binary/Hexadecimal
 - Byte representations
 - numbers
 - characters and strings
 - instructions
 - Bit-level manipulations
 - Boolean algebra
 - Expressing in C

Why Don’t Computers Use Base 10?

Base 10 Number Representation

- That’s why fingers are known as “digits”
- Natural representation for financial transactions
- Floating point number cannot exactly represent 1.20
- Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically

- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.

Binary Representations

Base 2 Number Representation

- Represent 1523_{10} as 1110110110110_2
- Represent 1.20_{10} as $1.0011001100111[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
- Only allocate for regions actually used by program
- In Unix and Windows NT (and 2000), address space is private to a particular “process”
- Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.
Encoding Byte Values

Byte = 8 bits
- Binary 00000000 to 11111111
- Decimal: 0 to 255
- Hexadecimal 00 to FF
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B in C as 0xFA1D37B
 - Or 0xFA1D37B
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'

Machine Words

Machine Has “Word Size”
- Nominal size of integer-valued data
- Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address 1.8×10^{19} bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

Sizes of C Objects (in Bytes)
- C Data Type Compaq Alpha Typical 32-bit Intel IA32
 - int 4 4 4
 - long int 8 4 4
 - char 1 1 1
 - short 2 2 2
 - float 4 4 4
 - double 8 8 8
 - long double 8 8 10/12
 - char * 8 4 4
 - Or any other pointer

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions
- Sun’s, Mac’s are “BigEndian” machines
 - Least significant byte has highest address
- Alphas, PC’s are “LittleEndian” machines
 - Least significant byte has lowest address

Big Endian Example

| Variable x has 4-byte representation 0x01234567 |
| Address given by &x is 0xa100 |
| Big Endian | Little Endian |
| 0x01 0x23 0x45 0x67 | 0x67 0x45 0x23 0x01 |

Little Endian Example

| Variable x has 4-byte representation 0x01234567 |
| Address given by &x is 0xa100 |
| Big Endian | Little Endian |
| 0x01 0x23 0x45 0x67 | 0x67 0x45 0x23 0x01 |

Page 2
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

```c
int * P = & B ;
int B = -15213 ;
```

Deciphering Numbers

- Value: 0x12ab
- Pad to 4 bytes: 0xa0000000
- Split into bytes: ab 12 00 00
- Reverse: ba 24

Examining Data Representations

Code to Print Byte Representation of Data
- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char * pointer ;
void show_bytes (pointer start , int len ) {
    int i ;
    for ( i = 0 ; i < len ; i ++ )
        printf ( " 0x% p \t 0 x % .2 x \ n " ,
                start + i , start [ i ] ) ;
    printf ( " \ n " ) ;
}
```

Representing Integers

- Integer A = 15213 ;
- Integer B = -15213 ;
- Long int C = 15213 ;

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>80483e5 : 5b</td>
<td>pop &ebx</td>
<td></td>
</tr>
<tr>
<td>80483e6 : 81 3 b 12 00 00</td>
<td>add 0x12ab, &ebx</td>
<td></td>
</tr>
<tr>
<td>80483e6c : 83 bb 28 00 00 00</td>
<td>cmp 0, 0x28 (&ebx)</td>
<td></td>
</tr>
</tbody>
</table>

Representing Pointers

```c
int a = 15213 ;
printf ( " int a = 15213 ; \ n " ) ;
show_bytes (pointer) &a, sizeof (int) ;
```

Result (Linux):

```c
int a = 15213 ;
0xf0000000 0xd6
0x00000000 0x00b
```

Representing Floats

Float F = 15213.0 ;

IEEE Single Precision Floating Point Representation

- Not same as integer representation, but consistent across machines
- Can see some relation to integer representation, but not obvious

Different compilers & machines assign different locations to objects
Representing Strings

Strings in C
- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character "0" has code 0x30
 - Digit 0 has code 0x30
- String should be null-terminated
 - Final character = 0
Compatibility
- Byte ordering not an issue
- Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character(s)

Machine-Level Code Representation

Encode Program as Sequence of Instructions
- Each instruction is a simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
 - Most code not binary compatible
Programs are Byte Sequences Too!

Representing Instructions

```c
int sum(int x, int y)
{
    return x + y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use different numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
- Same for NT and for Linux
- NT / Linux not fully binary compatible

Boolean Algebra

Developed by George Boole in 19th Century
- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And
- \(A & B = 1 \) when both \(A = 1 \) and \(B = 1 \)
- \(A & B = 0 \) when either \(A = 0 \) or \(B = 0 \)

Or
- \(A | B = 1 \) when either \(A = 1 \) or \(B = 1 \)
- \(A | B = 0 \) when both \(A = 0 \) and \(B = 0 \)

Not
- \(\sim A = 1 \) when \(A = 0 \)
- \(\sim A = 0 \) when \(A = 1 \)

Exclusive-Or (Xor)
- \(A ^ B = 1 \) when either \(A = 1 \) or \(B = 1 \)
 - but not both

Integer Algebra

Integer Arithmetic
- \((\mathbb{Z}, +, \cdot, 0, 1) \) forms a “ring”
- Addition is the “sum” operation
- Multiplication is the “product” operation
- is the additive inverse
- 0 is the identity for sum
- 1 is the identity for product
Boolean Algebra

Boolean Algebra
- \(\langle 0,1 \rangle, \lor, \land, \neg, 0, 1 \) forms a “Boolean algebra”
- Or is the “sum” operation
- And is the “product” operation
- \(\neg \) is the “complement” operation (not additive inverse)
- 0 is the identity for sum
- 1 is the identity for product

Boolean Algebra ≠ Integer Ring

- Boolean: *Sum distributes over product*
 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \]

- Boolean: *Identity*
 \[A \lor A = A \]

- Boolean: *Absorption*
 \[A \lor (A \land B) = A \]

- Boolean: *Laws of Complements*
 \[A \land \neg A = 0 \]

- Boolean: *Ring: Every element has additive inverse*
 \[A \land \neg A = 0 \]

Relations Between Operations

- **De Morgan’s Laws**
 - Express \& in terms of |, and vice-versa
 \[A \land B = \neg (\neg A \lor \neg B) \]
 - A and B are true if and only if neither A nor B is false
 - \[A \lor B = \neg (\neg A \land \neg B) \]
 - A or B are true if and only if A and B are not both false

- **Exclusive-Or using Inclusive Or**
 - \[A \lor B = \neg (A \land B) \]
 - Exactly one of A and B is true
 - \[A \lor B = (A \lor B) \land \neg (A \land B) \]
 - Either A is true, or B is true, but not both

Shortened for Readability

Boolean Algebra = Integer Ring

- **Commutativity**
 \[A \lor B = B \lor A \]
 \[A \land B = B \land A \]

- **Associativity**
 \[(A \lor B) \lor C = A \lor (B \lor C) \]
 \[(A \land B) \land C = A \land (B \land C) \]

- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]

- **Sum and product identities**
 \[A \lor 0 = A \]
 \[A \land 1 = A \]

- **Zero is product annihilator**
 \[A \land 0 = 0 \]

- **Cancellation of negation**
 \[\neg (\neg A) = A \]

General Boolean Algebras

- **Operate on Bit Vectors**
 \[01101001 01101001 01101001 \]

- **All of the Properties of Boolean Algebra Apply**
Representing & Manipulating Sets

Representation
- Width w bit vector represents subsets of \{0, ..., w-1\}
- \(a_j = 1 \iff j \in A\)
- \(01101001\) \(\{0, 2, 4, 6\}\)
- \(76543210\) \(\{0, 2, 4, 6\}\)

Operations
- & Intersection \(01000001\) \(\{0\}\)
- | Union \(01111101\) \(\{0, 2, 3, 4, 5\}\)
- ^ Symmetric difference \(00111100\) \(\{2, 3, 4, 5\}\)
- ~ Complement \(10101010\) \(\{1, 3, 5, 7\}\)

Bit-Level Operations in C

Operations & | ^ ~ Available in C
- Apply to any "integral" data type
- long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)
- \(~0x41 \rightarrow 0x5F\)
- \(~0x00 \rightarrow 0xFF\)
- \(0x69 \& 0x55 \rightarrow 0x41\)
- \(01101001, 01101010 \rightarrow 01000001\)
- \(0x69 \mid 0x55 \rightarrow 0x7D\)
- \(01101011, 01101011 \rightarrow 01111111\)

Shift Operations

Left Shift: \(x << y\)
- Shift bit-vector \(x\) left \(y\) positions
- Throw away extra bits on left
- Fill with 0's on right
- Early termination

Right Shift: \(x >> y\)
- Shift bit-vector \(x\) right \(y\) positions
- Throw away extra bits on right
- Logical shift
- Fill with 0's on left
- Arithmetic shift
- Replicate most significant bit on right
- Useful with two's complement integer representation

Cool Stuff with Xor

Bitwise Xor is a form of addition
- With extra property that every value is its own additive inverse
- \(A \oplus A = 0\)

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

Main Points

It's All About Bits & Bytes
- Numbers
- Programs
- Text

Different Machines Follow Different Conventions
- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis
- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
- Good for representing & manipulating sets