CSCE 230J **Computer Organization**

Exceptional Control Flow Part I

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Drs. Bryant and O'Hallaron, Carnegie Mellon University.
- I have modified them and added new slides.

Topics

- Exceptions
- Process context switches
- Creating and destroying processes

Control Flow

Computers do Only One Thing

Time

From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time.

Physical control flow <startup> inst₁

inst, inst₃ ... inst_n <shutdown:

This sequence is the system's physical control flow (or flow of control).

Altering the Control Flow

Up to Now: two mechanisms for changing control flow:

- Jumps and branches
- Call and return using the stack discipline.
- Both react to changes in program state.

Insufficient for a useful system

- Difficult for the CPU to react to changes in system state.
- data arrives from a disk or a network adapter
- · Instruction divides by zero · User hits ctl-c at the keyboard
- System timer expires

System needs mechanisms for "exceptional control flow'

Exceptional Control Flow

Mechanisms for exceptional control flow exists at all levels of a computer system

Low level Mechanism

- exceptions change in control flow in response to a system event (i.e., change in system state)
- Combination of hardware and OS software Higher Level Mechanisms
 - Process context switch
 - Signals
 - Nonlocal jumps (setjmp/longjmp)

 - Implemented by either:
 OS software (context switch and signals).
 C language runtime library: nonlocal jumps.

Processes

Def: A process is an instance of a running program.

- One of the most profound ideas in computer science.
- Not the same as "program" or "processor"

Process provides each program with two key abstractions:

- Logical control flow
- Each program seems to have exclusive use of the CPU. Private address space

• Each program seems to have exclusive use of main memory.

How are these Illusions maintained?

- Process executions interleaved (multitasking)
- Address spaces managed by virtual memory system

wait: Synchronizing with children

int wait(int *child_status)

- suspends current process until one of its children terminates
- return value is the pid of the child process that terminated
- if child_status != NULL, then the object it points to will be set to a status indicating why the child process terminated

Summarizing

Exceptions

- Events that require nonstandard control flow
- Generated externally (interrupts) or internally (traps and faults)
 Processes
 - At any given time, system has multiple active processes
 - Only one can execute at a time, though
 - Each process appears to have total control of processor + private memory space

Summarizing (cont.)

- Spawning Processes
- Call to fork
- One call, two returns
- Terminating Processes
 - Call exit
 One call, no return
- Reaping Processes

 Call wait or waitpid
- Replacing Program Executed by Process
 - Call exec1 (or variant)
 One call, (normally) no return