CSCE 230J
Computer Organization

Processor Architecture VI:
Wrap-Up

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new
slides.

Page 1

Overview

Wrap-Up of PIPE Design
m Performance analysis
m Fetch stage design
m Exceptional conditions

Modern High-Performance Processors
m Out-of-order execution

Performance Metrics

Clock rate
m Measured in Megahertz or Gigahertz

m Function of stage partitioning and circuit design
® Keep amount of work per stage small

Rate at which instructions executed
m CPI: cycles per instruction

m On average, how many clock cycles does each instruction
require?
m Function of pipeline design and benchmark programs
® E.g., how frequently are branches mispredicted?

Page 2

CPI for PIPE

CPI=1.0
m Fetch instruction each clock cycle

m Effectively process new instruction almost every cycle
® Although each individual instruction has latency of 5 cycles

CPI>1.0
m Sometimes must stall or cancel branches

Computing CPI
m C clock cycles
m | instructions executed to completion
m B bubbles injected (C =1+ B)
CPI = C/Il = (I+B)/I = 1.0+ B/l
m Factor B/l represents average penalty due to bubbles

CPI for PIPE (Cont.)

B/I=LP +MP +RP
m LP: Penalty due to load/use hazard stalling Typic
e Fraction of instructions that are loads
e Fraction of load instructions requiring stall
o Number of bubbles injected each time
= LP=0.25*0.20*1=0.05
m MP: Penalty due to mispredicted branches
® Fraction of instructions that are cond. jumps
® Fraction of cond. jumps mispredicted
e Number of bubbles injected each time
= MP=0.20*0.40*2=0.16
m RP: Penalty due to r et instructions
e Fraction of instructions that are returns
e Number of bubbles injected each time
= RP=0.02*3=0.06
m Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
= CPI=1.27 (Not bad!)

al Values

0.25
0.20
1

0.20
0.40

0.02

Page 3

Fetch Logic Revisited

M_icode
M_Bch

During Fetch Cycle .
1. Select PC > B |
2. Read bytes from J
instruction memory - J
PC

increment
»

ifun | rA B

3. Examine icode to
determine
instruction length

4. Increment PC

Instruction
memory

Timing
m Steps 2 & 4 require

significant amount
of time

predPC

Standard Fetch Timing

Select PC need_regids, need_valC
|\ | Mem. Read I \ I Increment |
I I I ‘
— -
—~

1 clock cycle

m Must Perform Everything in Sequence

m Can’t compute incremented PC until know how much to
increment it by

Page 4

A Fast PC Increment Circuit

incrPC

1

High-order 29 bits Low-order 3 bits
MUX carry
0 1

A
29-bit |
Slow incre- L 3-bit adder Fast
menter
x 4 x
. _ 0
High-order 29 bits need ValC

I Low-order 3 bits

PC

9
Modified Fetch Timing
need_regids, ne_ed_vaIC
Select PC \S'b't add
\ Mem. Read [[MUX
1
Incrementer
— _
— Standard cycle
1 clock cycle
29-Bit Incrementer
m Acts as soon as PC selected
m Output not needed until final MUX
m Works in parallel with memory read
10

Page 5

More Realistic Fetch Logic

Other PC Controls

—
l l l 1 1 Byte 0 Bytes 1-5
Fetch Instr. |,/ Current
Control Length Instruction
! t
. [| Current Block
Instruction
Cache f
—-| | Next Block

Fetch Box
m Integrated into instruction cache
m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block

m Works ahead to fetch next block
® As reaches end of current block
® At branch target

11

Exceptions

m Conditions under which pipeline cannot continue normal
operation

Causes
m Halt instruction (Current)
m Bad address for instruction or data (Previous)
m Invalid instruction (Previous)
m Pipeline control error (Previous)

Desired Action
m Complete some instructions
e Either current or previous (depends on exception type)
m Discard others
m Call exception handler
® Like an unexpected procedure call

12

Page 6

Exception Examples

Detect in Fetch Stage
jmp $-1
. byte OxFF
hal t

Detect in Memory Stage

i rmovl $100, %eax
rmmovl %ax, 0x10000(¥eax)

Invalid junp target

Invalid instruction code

Halt instruction

invalid address

13

Exceptions in Pipeline Processor #1

denp-excl.ys
i rmovl $100, Y%eax

rmmovl % ax, 0x10000(%eax) # Invalid address

nop
. byte OxFF

0x000: irnovl $100, %eax

0x00c: nop
0x00d: . byte OxFF

Invalid instruction code

[22]z]e]5s]

/ Exception detected

0x006: rmovl %ax, 0x1000(%ax) | F | D

|[F[p]E[M]wW
E[M
F|D|E
F|D

Exception detected

Desired Behavior

= rmmovl should cause exception

14

Page 7

Exceptions in Pipeline Processor #2

denp- exc2.ys

0x000: xorl %eax, Yeax # Set condition codes
0x002: jne t # Not taken
0x007: i rmovl $1, %eax
0x00d: i rmovl $2, %edx
0x013: hal t
0x014: t: .byte OxFF # Tar get
(1f2fslels]e]7]8]o]
0x000: xorl %ax, ¥%eax | F|ID|E|[M|[W
0x002: jne t F|{D|E | M
0x014: t: .byte OxFF F|ID|E|M|W
0x???: (I'mlost!) F|D|E|[M|W
0x007: i rmovl $1, %eax F|ID|E|M|[W

Exception detected
Desired Behavior

m No exception should occur

15

Maintaining Exception Ordering

e [o [l
e [o Ml

€

icode | ifun

-]~ Il
predPC

m Add exception status field to pipeline registers

m Fetch stage sets to either “AOK,” “ADR” (when bad fetch
address), or “INS” (illegal instruction)

m Decode & execute pass values through
m Memory either passes through or sets to “ADR”
m Exception triggered only when instruction hits write back

16

Page 8

Side Effects in Pipeline Processor

denp-exc3.ys

i rmovl $100, %eax

rmmovl %ax, 0x10000(%eax) # invalid address

addl %ax, Y%eax # Sets condition codes

[22]z]e]5s]

0x000: irmovl $100, Y%@ax |[F[p]E[M]wW /Exception detected
0x006: rmovl % ax, 0x1000(%ax) | F | D | E | M
0x00c: addl %ax, %ea F|D]|E

Condition code set
Desired Behavior
= rmmovl should cause exception
m No following instruction should have any effect

17

Avoiding Side Effects

Presence of Exception Should Disable State Update

m When detect exception in memory stage
® Disable condition code setting in execute
® Must happen in same clock cycle

m When exception passes to write-back stage
® Disable memory write in memory stage
® Disable condition code setting in execute stage
Implementation
m Hardwired into the design of the PIPE simulator
m You have no control over this

18

Page 9

Rest of Exception Handling

Calling Exception Handler

m Push PC onto stack

® Either PC of faulting instruction or of next instruction

® Usually pass through pipeline along with exception status
m Jump to handler address

® Usually fixed address

® Defined as part of ISA

Implementation
m Haven't tried it yet!

19
Modern CPU Design
Instruction Control
File
i Operations
Register| i Prediction
Updates| : OK?
i \ 4
Operation Results
20

Page 10

Instruction Control

Instruction Control

Register
File

) Operations
Grabs Instruction Bytes From Memory

m Based on Current PC + Predicted Targets for Predicted Branches
m Hardware dynamically guesses whether branches taken/not taken
and (possibly) branch target
Translates Instructions Into Operations
m Primitive steps required to perform instruction
m Typical instruction requires 1-3 operations

Converts Register References Into Tags

m Abstract identifier linking destination of one operation with sources
of later operations

21

EX eC U t I O n Eggiastfsr ?Pgla(d?iction Operations
Unit

y

Operation Results Add

Data Data

Execution

m Multiple functional units
® Each can operate in independently
m Operations performed as soon as operands available
® Not necessarily in program order
e Within limits of functional units
m Control logic
® Ensures behavior equivalent to sequential program execution

22

Page 11

CPU Capabilities of Pentium Il

Multiple Instructions Can Execute in Parallel
m 1 load

m 1 store

m 2 integer (one may be branch)

m 1 FP Addition

m 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined

m Instruction Latency Cycles/Issue
m Load / Store 3 1
m Integer Multiply 4 1
m Integer Divide 36 36
m Double/Single FP Multiply 5

m Double/Single FP Add 3 1
m Double/Single FP Divide 38 38

23

PentiumPro Block Diagram

P6 Microarchitecture 8K Instucton Gacne }._
m PentiumPro 5
Branch
H Targat
= Pentium |l Reorder
Buffar
H [40 enirigs)
= Pentium 1l
Fetzn Unit| IN-DRDER | Uop Sequencer [mat [RRe]
SECTION JmanL
Feservation Station “ .ee
12D antrias) |
Siore | mn i i == i
S I | FP o
’L‘ﬂﬁ‘: TF.?.{ | [s I
E: 3] e B z
Memory Flaordar TN -
Butfar (MOB) o
: “‘“‘"’.:* 1*"“;. a2
BK Dual-Portad Data Cache }Q—
B4
Microprocessor Report | System Bus Interface | L2 Cache Interfacs |-—
2/16/95 ¥ i i
‘t:!ﬁ.a:mr *t\-:d dala “'t-:a catn

Page 12

PentiumPro Operation

Translates instructions dynamically into “Uops”
m 118 bits wide
m Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine

m Uop executed when
® Operands available
® Functional unit available

m Execution controlled by “Reservation Stations”
® Keeps track of data dependencies between uops
® Allocates resources

25

PentiumPro Branch Prediction

Critical to Performance
m 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history

m Adaptive algorithm
® Can recognize repeated patterns, e.g., alternating taken—not
taken

Handling BTB misses
m Detect in cycle 6

m Predict taken for negative offset, not taken for positive
® Loops vs. conditionals

26

Page 13

Example Branch Prediction

Branch History

m Encode information about prior history of branch
instructions

m Predict whether or not branch will be taken

NT NT NT

T CESD (Yes?) (No?) (ED NT

T T T

State Machine
m Each time branch taken, transition to right
m When not taken, transition to left
m Predict branch taken when in state Yes! or Yes?

27
Front-End BTE Instruction (l_ﬁl_h— -
4K Entries TLB/Prefetcher s yole
; %d;
Instruction Decoder TH—
) Wioroonee N
Trace Cache BTB Trace Cache
‘ (512 Ent%es) i " (12K pops) }" Hop Queus Pl?;:l;d
. ¥ Intel Tech. Journal
[i | 3.2GB/s
{ + Q1, 2001
[Mernon: Bus
¥ Fra| Interface
l Unit
I THeger Fegieter e 7 Bypass Nebwak o talss i;
AGU AGU 2n s LU | [[2e LU Slow ALY [L2 Cache
Lead || st simpte | || simp compise by A (256K Byte
.ﬂdg:ess .l\ddorreess .'n";ﬁe |Irr|nstr.e hstr §§§2 ov 8-way)
1 { 48GBIs
[L1 Data Cache [3kbyte 4-way) @
¥
m Next generation microarchitecture
28

Page 14

Pentium 4 Features

IA32 uops
Trace Cache L5 Cache istrs. | |nstruct. Trace
Decoder Cache

l Operations

m Replaces traditional instruction cache
m Caches instructions in decoded form
m Reduces required rate for instruction decoder

Double-Pumped ALUs
m Simple instructions (add) run at 2X clock rate

Very Deep Pipeline
m 20+ cycle branch penalty
m Enables very high clock rates
m Slower than Pentium Il for a given clock rate

29

Processor Summary

Design Technique
m Create uniform framework for all instructions
® Want to share hardware among instructions

m Connect standard logic blocks with bits of control logic

Operation
m State held in memories and clocked registers

m Computation done by combinational logic

m Clocking of registers/memories sufficient to control overall

behavior

Enhancing Performance
m Pipelining increases throughput and improves resource
utilization
m Must make sure maintains ISA behavior

30

Page 15

