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Giving credit where credit is due

�Most of slides for this lecture are based on 
slides created by Dr. Bryant, Carnegie 
Mellon University.

� I have modified them and added new 
slides.
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Overview

Wrap-Up of PIPE Design
� Performance analysis

� Fetch stage design
� Exceptional conditions

Modern High-Performance Processors
� Out-of-order execution
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Performance Metrics

Clock rate
� Measured in Megahertz or Gigahertz

� Function of stage partitioning and circuit design
� Keep amount of work per stage small

Rate at which instructions executed
� CPI: cycles per instruction
� On average, how many clock cycles does each instruction 

require?
� Function of pipeline design and benchmark programs

� E.g., how frequently are branches mispredicted?
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CPI for PIPE

CPI ≈≈≈≈ 1.0
� Fetch instruction each clock cycle

� Effectively process new instruction almost every cycle
� Although each individual instruction has latency of 5 cycles

CPI > 1.0
� Sometimes must stall or cancel branches

Computing CPI
� C clock cycles
� I instructions executed to completion

� B bubbles injected (C = I + B)
CPI   =   C/I   =   (I+B)/I   =  1.0 + B/I

� Factor B/I represents average penalty due to bubbles
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CPI for PIPE (Cont.)
B/I = LP + MP + RP

� LP: Penalty due to load/use hazard stalling
� Fraction of instructions that are loads 0.25
� Fraction of load instructions requiring stall 0.20
� Number of bubbles injected each time 1
���� LP = 0.25 * 0.20 * 1 = 0.05

� MP: Penalty due to mispredicted branches
� Fraction of instructions that are cond. jumps 0.20
� Fraction of cond. jumps mispredicted 0.40
� Number of bubbles injected each time 2
���� MP = 0.20 * 0.40 * 2 = 0.16

� RP: Penalty due to r et  instructions
� Fraction of instructions that are returns 0.02
� Number of bubbles injected each time 3
���� RP = 0.02 * 3 = 0.06

� Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
���� CPI = 1.27    (Not bad!)

Typical Values
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Fetch Logic Revisited

During Fetch Cycle
1. Select PC

2. Read bytes from 
instruction memory

3. Examine icode to 
determine 
instruction length

4. Increment PC

Timing
� Steps 2 & 4 require 

significant amount 
of time F
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Standard Fetch Timing

� Must Perform Everything in Sequence
� Can’t compute incremented PC until know how much to 

increment it by

Select PC

Mem. Read Increment

need_regids, need_valC

1 clock cycle
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A Fast PC Increment Circuit 

3-bit adder
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Modified Fetch Timing

29-Bit Incrementer
� Acts as soon as PC selected
� Output not needed until final MUX

� Works in parallel with memory read

Select PC

Mem. Read

Incrementer

need_regids, need_valC
3-bit add

MUX

1 clock cycle

Standard cycle
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More Realistic Fetch Logic

Fetch Box
� Integrated into instruction cache
� Fetches entire cache block (16 or 32 bytes)
� Selects current instruction from current block

� Works ahead to fetch next block
� As reaches end of current block
� At branch target
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Exceptions

� Conditions under which pipeline cannot continue normal 
operation

Causes
� Halt instruction (Current)
� Bad address for instruction or data (Previous)

� Invalid instruction (Previous)
� Pipeline control error (Previous)

Desired Action
� Complete some instructions

� Either current or previous (depends on exception type)

� Discard others
� Call exception handler

� Like an unexpected procedure call
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Exception Examples

Detect in Fetch Stage

i r movl $100, %eax
r mmovl %eax, 0x10000( %eax)  # i nval i d addr ess

j mp $- 1                   # I nval i d j ump t ar get

. byt e 0xFF                # I nval i d i nst r uct i on code  

hal t                       # Hal t  i nst r uct i on

Detect in Memory Stage
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Exceptions in Pipeline Processor #1

Desired Behavior
� r mmovl should cause exception

# demo- exc1. ys
i r movl $100, %eax
r mmovl %eax, 0x10000( %eax)  # I nval i d addr ess
nop
. byt e 0xFF                # I nval i d i nst r uct i on code  

0x000: i r movl $100, %eax

1 2 3 4

F D E M

F D E0x006: r mmovl  %eax, 0x1000( %eax)

0x00c: nop

0x00d: . byt e 0xFF
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E

D

Exception detected

Exception detected
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Exceptions in Pipeline Processor #2

Desired Behavior
� No exception should occur

# demo- exc2. ys
0x000:     xor l %eax, %eax   # Set  condi t i on codes
0x002:     j ne t             # Not  t aken
0x007:     i r movl $1, %eax
0x00d:     i r movl $2, %edx
0x013:     hal t
0x014:  t :  . byt e 0xFF       # Tar get

0x000:     xor l %eax, %eax

1 2 3

F D E

F D0x002:     j ne t

0x014:  t :  . byt e 0xFF

0x???:  ( I ’ m l ost ! )

F

Exception detected

0x007:     i r movl $1, %eax
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Maintaining Exception Ordering

� Add exception status field to pipeline registers
� Fetch stage sets to either “ AOK,”  “ ADR”  (when bad fetch 

address), or “ INS”  (illegal instruction)
� Decode & execute pass values through
� Memory either passes through or sets to “ ADR”
� Exception triggered only when instruction hits write back

F predPC

W icode valE valM dstE dstMexc

M Bchicode valE valA dstE dstMexc

E icode ifun valC valA valB dstE dstM srcA srcBexc

D rB valC valPicode ifun rAexc
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Side Effects in Pipeline Processor

Desired Behavior
� r mmovl should cause exception
� No following instruction should have any effect

# demo- exc3. ys
i r movl $100, %eax
r mmovl %eax, 0x10000( %eax)  # i nval i d addr ess
addl %eax, %eax # Set s condi t i on codes

0x000: i r movl $100, %eax

1 2 3 4

F D E M

F D E0x006: r mmovl  %eax, 0x1000( %eax)

0x00c: addl  %eax, %eax F D

W

5

M

E

Exception detected

Condition code set
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Avoiding Side Effects

Presence of Exception Should Disable State Update
� When detect exception in memory stage 

� Disable condition code setting in execute
� Must happen in same clock cycle

� When exception passes to write-back stage
� Disable memory write in memory stage
� Disable condition code setting in execute stage

Implementation
� Hardwired into the design of the PIPE simulator
� You have no control over this
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Rest of Exception Handling

Calling Exception Handler
� Push PC onto stack

� Either PC of faulting instruction or of next instruction
� Usually pass through pipeline along with exception status

� Jump to handler address
� Usually fixed address
� Defined as part of ISA

Implementation
� Haven’t tried it yet!
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Modern CPU Design
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Instruction Control

Grabs Instruction Bytes From Memory
� Based on Current PC + Predicted Targets for Predicted Branches
� Hardware dynamically guesses whether branches taken/not taken 

and (possibly) branch target

Translates Instructions Into Operations
� Primitive steps required to perform instruction
� Typical instruction requires 1–3 operations

Converts Register References Into Tags
� Abstract identifier linking destination of one operation with sources 

of later operations
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Execution
Unit

� Multiple functional units
� Each can operate in independently

� Operations performed as soon as operands available
� Not necessarily in program order
� Within limits of functional units

� Control logic
� Ensures behavior equivalent to sequential program execution

ExecutionExecution
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CPU Capabilities of Pentium III
Multiple Instructions Can Execute in Parallel

� 1 load
� 1 store

� 2 integer (one may be branch)

� 1 FP Addition

� 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined
� Instruction Latency Cycles/Issue

� Load / Store 3 1

� Integer Multiply 4 1

� Integer Divide 36 36

� Double/Single FP Multiply 5 2

� Double/Single FP Add 3 1

� Double/Single FP Divide 38 38

PentiumPro Block Diagram

P6 Microarchitecture
� PentiumPro

� Pentium II
� Pentium III

Microprocessor Report
2/16/95



Page 5

25

PentiumPro Operation

Translates instructions dynamically into “ Uops”
� 118 bits wide

� Holds operation, two sources, and destination

Executes Uops with “ Out of Order”  engine
� Uop executed when

� Operands available
� Functional unit available

� Execution controlled by “ Reservation Stations”
� Keeps track of data dependencies between uops
� Allocates resources
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PentiumPro Branch Prediction

Critical to Performance
� 11–15 cycle penalty for misprediction

Branch Target Buffer
� 512 entries
� 4 bits of history

� Adaptive algorithm
� Can recognize repeated patterns, e.g., alternating taken–not 

taken

Handling BTB misses
� Detect in cycle 6
� Predict taken for negative offset, not taken for positive

� Loops vs. conditionals
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Example Branch Prediction

Branch History 
� Encode information about prior history of branch 

instructions
� Predict whether or not branch will be taken

State Machine
� Each time branch taken, transition to right

� When not taken, transition to left
� Predict branch taken when in state Yes! or Yes?

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

28

Pentium 4 Block Diagram

� Next generation microarchitecture

Intel Tech. Journal
Q1, 2001
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Pentium 4 Features

Trace Cache

� Replaces traditional instruction cache

� Caches instructions in decoded form
� Reduces required rate for instruction decoder

Double-Pumped ALUs
� Simple instructions (add) run at 2X clock rate

Very Deep Pipeline
� 20+ cycle branch penalty
� Enables very high clock rates
� Slower than Pentium III for a given clock rate

L2 Cache Instruct.
Decoder

Trace
Cache

IA32
Instrs.

uops

Operations
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Processor Summary

Design Technique
� Create uniform framework for all instructions

� Want to share hardware among instructions

� Connect standard logic blocks with bits of control logic

Operation
� State held in memories and clocked registers
� Computation done by combinational logic

� Clocking of registers/memories sufficient to control overall 
behavior

Enhancing Performance
� Pipelining increases throughput and improves resource 

utilization
� Must make sure maintains ISA behavior


