
Page 1

Processor Architecture VI:
Wrap-Up

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

� I have modified them and added new
slides.

3

Overview

Wrap-Up of PIPE Design
� Performance analysis

� Fetch stage design
� Exceptional conditions

Modern High-Performance Processors
� Out-of-order execution

4

Performance Metrics

Clock rate
� Measured in Megahertz or Gigahertz

� Function of stage partitioning and circuit design
� Keep amount of work per stage small

Rate at which instructions executed
� CPI: cycles per instruction
� On average, how many clock cycles does each instruction

require?
� Function of pipeline design and benchmark programs

� E.g., how frequently are branches mispredicted?

5

CPI for PIPE

CPI ≈≈≈≈ 1.0
� Fetch instruction each clock cycle

� Effectively process new instruction almost every cycle
� Although each individual instruction has latency of 5 cycles

CPI > 1.0
� Sometimes must stall or cancel branches

Computing CPI
� C clock cycles
� I instructions executed to completion

� B bubbles injected (C = I + B)
CPI = C/I = (I+B)/I = 1.0 + B/I

� Factor B/I represents average penalty due to bubbles

6

CPI for PIPE (Cont.)
B/I = LP + MP + RP

� LP: Penalty due to load/use hazard stalling
� Fraction of instructions that are loads 0.25
� Fraction of load instructions requiring stall 0.20
� Number of bubbles injected each time 1
���� LP = 0.25 * 0.20 * 1 = 0.05

� MP: Penalty due to mispredicted branches
� Fraction of instructions that are cond. jumps 0.20
� Fraction of cond. jumps mispredicted 0.40
� Number of bubbles injected each time 2
���� MP = 0.20 * 0.40 * 2 = 0.16

� RP: Penalty due to r et instructions
� Fraction of instructions that are returns 0.02
� Number of bubbles injected each time 3
���� RP = 0.02 * 3 = 0.06

� Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
���� CPI = 1.27 (Not bad!)

Typical Values

Page 2

7

Fetch Logic Revisited

During Fetch Cycle
1. Select PC

2. Read bytes from
instruction memory

3. Examine icode to
determine
instruction length

4. Increment PC

Timing
� Steps 2 & 4 require

significant amount
of time F

D rB

M_icode

Predict
PC

valC valPicode ifun rA

Instruction
memory

Instruction
memory

PC
increment

PC
increment

predPC

Need
regids

Need
valC

Instr
valid

AlignAlignSplitSplit

Bytes 1-5Byte 0

Select
PC

M_Bch

M_valA

W_icode

W_valM

8

Standard Fetch Timing

� Must Perform Everything in Sequence
� Can’t compute incremented PC until know how much to

increment it by

Select PC

Mem. Read Increment

need_regids, need_valC

1 clock cycle

9

A Fast PC Increment Circuit

3-bit adder

need_ValC

need_regids
0

29-bit
incre-

menter

MUX

High-order 29 bits

Low-order 3 bits

High-order 29 bits Low-order 3 bits

0 1

PC

incrPC

Slow Fast

carry

10

Modified Fetch Timing

29-Bit Incrementer
� Acts as soon as PC selected
� Output not needed until final MUX

� Works in parallel with memory read

Select PC

Mem. Read

Incrementer

need_regids, need_valC
3-bit add

MUX

1 clock cycle

Standard cycle

11

More Realistic Fetch Logic

Fetch Box
� Integrated into instruction cache
� Fetches entire cache block (16 or 32 bytes)
� Selects current instruction from current block

� Works ahead to fetch next block
� As reaches end of current block
� At branch target

Instruction
Cache

Instruction
Cache

Bytes 1-5Byte 0

Current Block

Next Block

Current
Instruction
Current

Instruction
Instr.

Length
Instr.

Length
Fetch

Control
Fetch

Control

Other PC Controls

12

Exceptions

� Conditions under which pipeline cannot continue normal
operation

Causes
� Halt instruction (Current)
� Bad address for instruction or data (Previous)

� Invalid instruction (Previous)
� Pipeline control error (Previous)

Desired Action
� Complete some instructions

� Either current or previous (depends on exception type)

� Discard others
� Call exception handler

� Like an unexpected procedure call

Page 3

13

Exception Examples

Detect in Fetch Stage

i r movl $100, %eax
r mmovl %eax, 0x10000(%eax) # i nval i d addr ess

j mp $- 1 # I nval i d j ump t ar get

. byt e 0xFF # I nval i d i nst r uct i on code

hal t # Hal t i nst r uct i on

Detect in Memory Stage

14

Exceptions in Pipeline Processor #1

Desired Behavior
� r mmovl should cause exception

demo- exc1. ys
i r movl $100, %eax
r mmovl %eax, 0x10000(%eax) # I nval i d addr ess
nop
. byt e 0xFF # I nval i d i nst r uct i on code

0x000: i r movl $100, %eax

1 2 3 4

F D E M

F D E0x006: r mmovl %eax, 0x1000(%eax)

0x00c: nop

0x00d: . byt e 0xFF

F D

F

W

5

M

E

D

Exception detected

Exception detected

15

Exceptions in Pipeline Processor #2

Desired Behavior
� No exception should occur

demo- exc2. ys
0x000: xor l %eax, %eax # Set condi t i on codes
0x002: j ne t # Not t aken
0x007: i r movl $1, %eax
0x00d: i r movl $2, %edx
0x013: hal t
0x014: t : . byt e 0xFF # Tar get

0x000: xor l %eax, %eax

1 2 3

F D E

F D0x002: j ne t

0x014: t : . byt e 0xFF

0x???: (I ’ m l ost !)

F

Exception detected

0x007: i r movl $1, %eax

4

M

E

F

D

W

5

M

D

F

E

E

D

M

6

M

E

W

7

W

M

8

W

9

16

Maintaining Exception Ordering

� Add exception status field to pipeline registers
� Fetch stage sets to either “ AOK,” “ ADR” (when bad fetch

address), or “ INS” (illegal instruction)
� Decode & execute pass values through
� Memory either passes through or sets to “ ADR”
� Exception triggered only when instruction hits write back

F predPC

W icode valE valM dstE dstMexc

M Bchicode valE valA dstE dstMexc

E icode ifun valC valA valB dstE dstM srcA srcBexc

D rB valC valPicode ifun rAexc

17

Side Effects in Pipeline Processor

Desired Behavior
� r mmovl should cause exception
� No following instruction should have any effect

demo- exc3. ys
i r movl $100, %eax
r mmovl %eax, 0x10000(%eax) # i nval i d addr ess
addl %eax, %eax # Set s condi t i on codes

0x000: i r movl $100, %eax

1 2 3 4

F D E M

F D E0x006: r mmovl %eax, 0x1000(%eax)

0x00c: addl %eax, %eax F D

W

5

M

E

Exception detected

Condition code set

18

Avoiding Side Effects

Presence of Exception Should Disable State Update
� When detect exception in memory stage

� Disable condition code setting in execute
� Must happen in same clock cycle

� When exception passes to write-back stage
� Disable memory write in memory stage
� Disable condition code setting in execute stage

Implementation
� Hardwired into the design of the PIPE simulator
� You have no control over this

Page 4

19

Rest of Exception Handling

Calling Exception Handler
� Push PC onto stack

� Either PC of faulting instruction or of next instruction
� Usually pass through pipeline along with exception status

� Jump to handler address
� Usually fixed address
� Defined as part of ISA

Implementation
� Haven’t tried it yet!

20

Modern CPU Design

ExecutionExecution

Functional
Units

Instruction ControlInstruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction
OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register
Updates

21

Instruction Control

Grabs Instruction Bytes From Memory
� Based on Current PC + Predicted Targets for Predicted Branches
� Hardware dynamically guesses whether branches taken/not taken

and (possibly) branch target

Translates Instructions Into Operations
� Primitive steps required to perform instruction
� Typical instruction requires 1–3 operations

Converts Register References Into Tags
� Abstract identifier linking destination of one operation with sources

of later operations

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File

22

Execution
Unit

� Multiple functional units
� Each can operate in independently

� Operations performed as soon as operands available
� Not necessarily in program order
� Within limits of functional units

� Control logic
� Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Data
Cache

Prediction
OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Register
Updates

Operations

23

CPU Capabilities of Pentium III
Multiple Instructions Can Execute in Parallel

� 1 load
� 1 store

� 2 integer (one may be branch)

� 1 FP Addition

� 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined
� Instruction Latency Cycles/Issue

� Load / Store 3 1

� Integer Multiply 4 1

� Integer Divide 36 36

� Double/Single FP Multiply 5 2

� Double/Single FP Add 3 1

� Double/Single FP Divide 38 38

PentiumPro Block Diagram

P6 Microarchitecture
� PentiumPro

� Pentium II
� Pentium III

Microprocessor Report
2/16/95

Page 5

25

PentiumPro Operation

Translates instructions dynamically into “ Uops”
� 118 bits wide

� Holds operation, two sources, and destination

Executes Uops with “ Out of Order” engine
� Uop executed when

� Operands available
� Functional unit available

� Execution controlled by “ Reservation Stations”
� Keeps track of data dependencies between uops
� Allocates resources

26

PentiumPro Branch Prediction

Critical to Performance
� 11–15 cycle penalty for misprediction

Branch Target Buffer
� 512 entries
� 4 bits of history

� Adaptive algorithm
� Can recognize repeated patterns, e.g., alternating taken–not

taken

Handling BTB misses
� Detect in cycle 6
� Predict taken for negative offset, not taken for positive

� Loops vs. conditionals

27

Example Branch Prediction

Branch History
� Encode information about prior history of branch

instructions
� Predict whether or not branch will be taken

State Machine
� Each time branch taken, transition to right

� When not taken, transition to left
� Predict branch taken when in state Yes! or Yes?

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

28

Pentium 4 Block Diagram

� Next generation microarchitecture

Intel Tech. Journal
Q1, 2001

29

Pentium 4 Features

Trace Cache

� Replaces traditional instruction cache

� Caches instructions in decoded form
� Reduces required rate for instruction decoder

Double-Pumped ALUs
� Simple instructions (add) run at 2X clock rate

Very Deep Pipeline
� 20+ cycle branch penalty
� Enables very high clock rates
� Slower than Pentium III for a given clock rate

L2 Cache Instruct.
Decoder

Trace
Cache

IA32
Instrs.

uops

Operations

30

Processor Summary

Design Technique
� Create uniform framework for all instructions

� Want to share hardware among instructions

� Connect standard logic blocks with bits of control logic

Operation
� State held in memories and clocked registers
� Computation done by combinational logic

� Clocking of registers/memories sufficient to control overall
behavior

Enhancing Performance
� Pipelining increases throughput and improves resource

utilization
� Must make sure maintains ISA behavior

