CSCE 230J
Computer Organization

Processor Architecture VI:
Wrap-Up

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new
slides.

Overview

Wrap-Up of PIPE Design
= Performance analysis
= Fetch stage design
= Exceptional conditions

Modern High-Performance Processors
= Out-of-order execution

Performance Metrics

Clock rate
= Measured in Megahertz or Gigahertz
= Function of stage partitioning and circuit design
® Keep amount of work per stage small
Rate at which instructions executed
= CPI: cycles per instruction
= On average, how many clock cycles does each instruction
require?
= Function of pipeline design and benchmark programs
® E.g., how frequently are branches mispredicted?

CPI for PIPE

CPI=1.0
= Fetch instruction each clock cycle
m Effectively process new instruction almost every cycle
o Although each individual instruction has latency of 5 cycles
CPI>1.0
= Sometimes must stall or cancel branches

Computing CPI
m C clock cycles
m |instructions executed to completion
= B bubbles injected (C =1+ B)
CPlI = C/l = (+B)/I = 1.0+BI/l
= Factor B/l represents average penalty due to bubbles

CPI for PIPE (Cont.)

B/l =LP +MP +RP

m LP: Penalty due to load/use hazard stalling Typical Values

e Fraction of instructions that are loads 0.25
® Fraction of load instructions requiring stall 0.20
o Number of bubbles injected each time 1

= LP=0.25*0.20*1=0.05
= MP: Penalty due to mispredicted branches

® Fraction of instructions that are cond. jumps 0.20
® Fraction of cond. jumps mispredicted 0.40
o Number of bubbles injected each time 2

= MP=0.20%*0.40*2=0.16

= RP: Penalty duetoret instructions
e Fraction of instructions that are returns 0.02
o Number of bubbles injected each time 3
= RP=0.02*3=0.06

= Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
= CPI=1.27 (Notbad!)

Page 1

Fetch Logic Revisited

During Fetch Cycle
Select PC Ol o[[» [o | ac

. Read bytes from
instruction memory
. Examine icode to ~ .‘_'
determine
instruction length
. Increment PC

=~

N

w

Byie0 Byes 15

Instruction
memory

IS

Timing

= Steps 2 & 4 require

significant amount
of time

preapc.

Standard Fetch Timing

Select PC need_regids, need_valC

LY _|_Mem.Read LY Increment |
| 1 1 1 |

~—
1 clock cycle

= Must Perform Everything in Sequence

= Can’t compute incremented PC until know how much to
increment it by

A Fast PC Increment Circuit

incrPC

High-order 29 bits Low-order 3 bits

MUX .

29-bit
Slow incre-
menter

3-bit adder Fast

H

n’eedireglds

High-order 29 bits

i 0
need_ValC
T Low-order 3 bits

PC

Modified Fetch Timing

need_regids, need_valC

Select PC \3'b" add
\ L Mem. Read Yy MUX
T T
f Incrementer |
Standard cycle
~— Yy

1 clock cycle

29-Bit Incrementer
= Acts as soon as PC selected
= Output not needed until final MUX
= Works in parallel with memory read

10

More Realistic Fetch Logic

Other PC Controls

~
lll l—li Byte 0 |Eylesl—5

Fetch Instr. Current
Control Length Instruction

Current Block

Cache [}
Next Block
Fetch Box

= Integrated into instruction cache
m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block
= Works ahead to fetch next block
® As reaches end of current block
® At branch target

11

Page 2

Exceptions

= Conditions under which pipeline cannot continue normal
operation

Causes
= Halt instruction (Current)
= Bad address for instruction or data (Previous)
= Invalid instruction (Previous)
= Pipeline control error (Previous)

Desired Action
= Complete some instructions
e Either current or previous (depends on exception type)
m Discard others
= Call exception handler
@ Like an unexpected procedure call

Exception Examples Exceptions in Pipeline Processor #1

deno-excl.ys

Detect in Fetch St irmovl $100, Y%eax
etec ch Stage rmmovl %ax, 0x10000(%eax) # Invalid address
. - nop
jmp $-1 # Invalid junp target .byte OxFF # Invalid instruction code
.byte OxFF # Invalid instruction code
hal t # Hal't instruction 0x000: irnovl $100, %ax [FIDp[E[M]wW /Exception detected
0x006: rnmovl %ax, 0x1000(%eax) ‘ F|D|E|M
Detect in Memory Stage 0x00c: _nop F[p|E
0x00d: . byte OxFF F|D
irmovl $100, %eax Exception detected

rmmov] %ax, 0x10000(%eax) # invalid address
Desired Behavior
= rmmov! should cause exception

13 14

Exceptions in Pipeline Processor #2 Maintaining Exception Ordering
denp-exc2.ys -

0x000: xorl % ax, ¥%eax # Set condition codes valE ‘ valM -der

0x002: jne t # Not taken

0x00d: irmovl $2, %edx

0x013: hal t -\cude ifun - valC ‘ valA ‘ valg dstE | dstM | srcA | srcB

0x014: t: .byte OxFF # Target

[lels[+[eTslr s s] B BN DR

w000 ot Sewfeex [0 € [[w]
0x002: jnet [F|o|E][M™
gxg’l;:: EI : b?" el IO;(FF FIDIE MW l = Add exception status field to pipeline registers

X?2?272: 'mlost! FID|E|M|W .
X007 Trrovl ST Jeax / Flole mw] = Fetch stage sets to either “AOK,” “ADR” (when bad fetch

- . address), or “INS” (illegal instruction)

Exception detected m Decode & execute pass values through

= Memory either passes through or sets to “ADR”
= Exception triggered only when instruction hits write back

Desired Behavior
= No exception should occur

15 16

Side Effects in Pipeline Processor Avoiding Side Effects

deno-exc3.ys Presence of Exception Should Disable State Update
irmovl $100, %eax

rmmovl %ax, 0x10000(%eax) # invalid address = When detect exception in memory stage
addl %ax, Y%eax # Sets condition codes ® Disable condition code setting in execute
® Must happen in same clock cycle
= When exception passes to write-back stage
@ Disable memory write in memory stage
o Disable condition code setting in execute stage

0x000: irnovl $100, %ax Exception detected
0x006: rmmovl %eax, 0x1000(%eax) ‘ F|D|E

0x00c: addl %ax, %ea: F| D

£

Implementation
= Hardwired into the design of the PIPE simulator
= You have no control over this

—_m

Condition code set
Desired Behavior
= rmmov| should cause exception
= No following instruction should have any effect

17 18

Page 3

Rest of Exception Handling

Calling Exception Handler
= Push PC onto stack
e Either PC of faulting instruction or of next instruction
e Usually pass through pipeline along with exception status

= Jump to handler address
® Usually fixed address
e Defined as part of ISA

Implementation
= Haven't tried it yet!

19

Modern CPU Design

Instruction Control

Address

Operations

Register] Prediction
Update:

Operation Resuits

Executio

20

Instruction Control

Instruction Control
Address

. v Operations
Grabs Instruction Bytes From Memory

= Based on Current PC + Predicted Targets for Predicted Branches
=m Hardware dynamically guesses whether branches taken/not taken
and (possibly) branch target
Translates Instructions Into Operations
m Primitive steps required to perform instruction
= Typical instruction requires 1-3 operations

Converts Register References Into Tags

m Abstract identifier linking destination of one operation with sources
of later operations

21

Execution resser predoton operations
N Updates 4 4 OK? P
Unit

Operation Results

Execution

= Multiple functional units
® Each can operate in independently
= Operations performed as soon as operands available
® Not necessarily in program order
® Within limits of functional units
= Control logic
® Ensures behavior equivalent to sequential program execution

22

CPU Capabilities of Pentium IlI

Multiple Instructions Can Execute in Parallel
m 1load
= 1store
= 2 integer (one may be branch)
= 1 FP Addition
= 1 FP Multiplication or Division

Some Instructions Take > 1 Cycle, but Can be Pipelined

= Instruction Latency Cycles/Issue
= Load / Store 3 1
m Integer Multiply 4 1
= Integer Divide 36 36
= Double/Single FP Multiply 5 2
= Double/Single FP Add 3 1
m Double/Single FP Divide 38 38

23

PentiumPro Block Diagram

P6 Microarchitecture
= PentiumPro ,
.] =
= Pentium Il Bl .—m e
= Pentium |l -Gm"‘”_lmfm
SECTIO!

JE——— -

Sequencer

Uni ur A,
Memory Reorder
Buffer (MOB)

e

o Gt b Gt
Microprocessor Report || SyenBusiomiss | Lacache meice
2/16/95 {. ‘; \I_

PentiumPro Operation

Translates instructions dynamically into “Uops”
= 118 bits wide
= Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
= Uop executed when
@ Operands available
® Functional unit available
= Execution controlled by “Reservation Stations”
@ Keeps track of data dependencies between uops
® Allocates resources

25

PentiumPro Branch Prediction

Critical to Performance
m 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
= 4 bits of history
= Adaptive algorithm
e Can recognize repeated patterns, e.g., alternating taken—not
taken
Handling BTB misses
= Detect in cycle 6

= Predict taken for negative offset, not taken for positive
® Loops vs. conditionals

26

Example Branch Prediction

Branch History

= Encode information about prior history of branch
instructions

= Predict whether or not branch will be taken

@D -

NT NT NT

T@> es?] o)

T T

State Machine
= Each time branch taken, transition to right
= When not taken, transition to left
= Predict branch taken when in state Yes! or Yes?

27

Pentium 4 Block Diagram

FrontEnd B8 insiruction —
‘ (4K Entries) H bt K‘W 9%1..
—_I struction Decod ferooor .
Insiruction Decoder [n
Trace Cache BTB Trace Cache
‘ (512 Enl%es) (12K pops) op Quere pf#.ﬁin
S2cns | Intel Tech. Journal
Q1, 2001

C TEE

wweal O TFFoRerier] Interface
Unit

e g Tk TT

L2 Cache
(256K Byte
8.way)

I3 48GB/s
I Tt oo Gt £va) o)

= Next generation microarchitecture

28

Pentium 4 Features

1A32

Trace Cache Instrs. uops
L2 Cache Instruct. Trace

Decoder Cache

l Operations

= Replaces traditional instruction cache

= Caches instructions in decoded form

= Reduces required rate for instruction decoder
Double-Pumped ALUs

= Simple instructions (add) run at 2X clock rate
Very Deep Pipeline

m 20+ cycle branch penalty

= Enables very high clock rates

= Slower than Pentium Il for a given clock rate

29

Page 5

Processor Summary

Design Technique

= Create uniform framework for all instructions
® Want to share hardware among instructions

= Connect standard logic blocks with bits of control logic

Operation
= State held in memories and clocked registers
= Computation done by combinational logic
= Clocking of registers/memories sufficient to control overall
behavior
Enhancing Performance

= Pipelining increases throughput and improves resource
utilization

= Must make sure maintains ISA behavior

30

