CSCE 230J
Computer Organization

Processor Architecture IV:
Pipelined Implementation

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new
slides.

Real-World Pipelines: Car Washes

Sequential

Parallel

oy

Idea
= Divide process into
independent stages
= Move objects through stages
in sequence
= At any given time, multiple
objects being processed

Computational Example

300 ps 20 ps
—>| Combinational Delay = 320 ps
logic Throughput = 3.12 GOPS
Clock

System
= Computation requires total of 300 picoseconds
= Additional 20 picoseconds to save result in register
= Can must have clock cycle of at least 320 ps

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. Comb.
= logic logic logic Delay = 360_ps
A B c Throughput = 8.33 GOP|
|
Clock
System

= Divide combinational logic into 3 blocks of 100 ps each
m Can begin new operation as soon as previous one passes
through stage A.
® Begin new operation every 120 ps
= Overall latency increases
® 360 ps from start to finish

Pipeline Diagrams

Unpipelined

OP1 |
opP2 | |

OoP3 .
Time

= Cannot start new operation until previous one completes

3-Way Pipelined

oP1| A ‘ B C
op2 [alp [c]
oP3 hls[c]

Time

= Up to 3 operations in process simultaneously

Page 1

Operating a Pipeline
13241 [300]
Clock

oP1
oP2
oP3 I A | 8 ©
‘ : : : : i
0 120 240 360 480 640
Time

100ps 20ps 100ps 20ps 100ps 20ps

Comb. Comb.

%’2 logic Ae = logic
A B

Limitations: Nonuniform Delays

50ps 20ps 150 ps 20 ps 100 ps 20 ps
Comb Comb. Comb.
logic — Delay = 510 ps
A 'Dg'c '°g'c Throughput = 5.88 GOPS

ort][A] [B [cC] Clock

oP2 [A] B c]

oP3 Al B | cl]
Time

= Throughput limited by slowest stage
m Other stages sit idle for much of the time
= Challenging to partition system into balanced stages

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps

k

Clock Delay = 420 ps, Throughput = 14.29 GOPS

m As try to deepen pipeline, overhead of loading registers
becomes more significant
= Percentage of clock cycle spent loading register:
e 1-stage pipeline: 6.25%
® 3-stage pipeline: 16.67%
® 6-stage pipeline: 28.57%
= High speeds of modern processor designs obtained through
very deep pipelining

Data Dependencies

L.

— Combinational
logic
Clock

oP1 b

oP2 < Y
OoP3 q

Time
System

m Each operation depends on result from preceding one

Data Hazards

Comb. Comb. R Comb.
= logic logic e~ logic
A B g c
|
ort|[A]BJ]CKN Clock
oP2 a8 [/c
opP3 B | c]
OoP4 N a8 [c]
Time

= Result does not feed back around in time for next operation
= Pipelining has changed behavior of system

Data Dependencies in Processors

[1 irmv sso, Geax) |
Fwed e]
¥

‘3 mmovl 100(@nx). Y%edx ‘

m Result from one instruction used as operand for another
® Read-after-write (RAW) dependency

= Very common in actual programs

=» Must make sure our pipeline handles these properly
® Get correct results
® Minimize performance impact

Page 2

SEQ Hardware

= Stages occur in sequence

m One operation in process
atatime

Memory

Execute

Decode

Feteh

F —
]

Write back

SEQ+ Hardware

m Still sequential
implementation

m Reorder PC stage to put at
beginning
PC Stage

m Task is to select PC for
current instruction

m Based on results
computed by previous
instruction

Processor State
m PCis no longer stored in
register
= But, can determine PC
based on other stored

Memory

Execute

Decode

Write back

Fetch

information
13 14
Adding Pipeline Reqisters . . e
200G FIPEINS REQISTers Pipeline Stages
Fetch Memory
e emary m Select current PC
m Read instruction
m Compute incremented PC ~ sece
Freeue Decode
m Read program registers
Execute
. e m Operate ALU
Memory Fecn
o . = Read or write data memory
e e Write Back
m Update register file
15 16
Wiite back Wiite back
PIPE- Hardware] Feedback Paths
» Pipeline registers hold Wemary Predicted PC
intermediate values 2
from instruction [e o | m Guess value of next PC
execution Branch information
Forward (Upward) Paths Execute = Jump taken/not-taken
u Values passed from one = Fall-through or target
stage to next Bl o~ [o [o [l address EREICIEnE
= Cannot jump past - Return point
stages = Read from memory
® e.g., valC passes
through decode clel = Register updates
. = To register file write .
e B ports B
17 18

Page 3

Predicting the

gl

= Start fetch of new instruction after current one has completed
fetch stage
e Not enough time to reliably determine next instruction
m Guess which instruction will follow
® Recover if prediction was incorrect

Our Prediction Strategy

Instructions that Don’t Transfer Control
= Predict next PC to be valP
= Always reliable

Call and Unconditional Jumps
= Predict next PC to be valC (destination)
= Always reliable

Conditional Jumps
= Predict next PC to be valC (destination)
= Only correct if branch is taken
® Typically right 60% of time
Return Instruction
= Don't try to predict

20

Recovering
from PC
Misprediction

= Mispredicted Jump
@ Will see branch flag once instruction reaches memory stage
® Can get fall-through PC from valA

= Return Instruction
o Will get return PC when r et reaches write-back stage

21

Pipeline Demonstration

[1[z]sfelsfef7]a]o]

irmvl $1, %ax #11 [F]p[E[m][w

irmovl $2, %ecx #12 l FID|E|M|W

irmovl $3, %dx # 3 F|D|E|M|W

irmovl $4,%bx #14 Flo|E[m][w]

hal t s Flo|E[m][w]
Cycle 5

File: deno- basi c. ys
11

12

13

14

REEEE

15

22

Data Dependencies: 3 Nop’s

T dero e ys [i[z[a[«[s]e]7[s[efw]u]
0x000: i rmovl $10, %edx F[o[E[M[w
0x006: irmovl $3, Yeax |_| Flo|l e[m[w
0x00c: nop F|D|E[M|W
0x00d: nop FI|D|E| M| W
0x00e: nop Fl Dl E[M| w]
0x00f - addl %%dx, %eax Flo| e[M| w]
0x011: hal t Fl o[el m[w]
Cycle 6
w
R[%ax] <3
Cycle 7
D
valA <R[%%dx] = 10
valB < R[%ax] = 3
23

Data Dependencies: 2 Nop’s

% demo-nz.ys (2l afsf«[s[ef7[a]o]w]
0x000: irmovl $10,%dx | [F[D[E[M W
0x006: irmovl s3,%ax | | F| D| E| M| W
0x00¢: nop F[o] e[m[w
0x00d: nop Fl ol E[M| w]
0x00e: addl Yedx, %eax Flol e[m[w]
0x010: hal t F| o[E[M[w]
Cycle 6
w
R[%ax] <3
D
valA «R[%dx] = 10 | — Error
valB «R[%ax] = o*

Page 4

Data Dependencies: 1 Nop

‘ # deno-hl.ys

| [afzl=fa]s[e]r[e]o]

Data Dependencies: No Nop

% demo-no0.ys [[2[a]e[s]ef7]ce]
0x000:_irmovi $10,%dx | [F[D[E[M[W 0x000: i rmovi s10,%dx | [F| D] E[M| W
0x006: i rmovl §3, %eax [F[ol E[M[wW 0x006: i rmovl 3, %eax [F[ol E[M[wW
0x00¢: nop Fl o[e[mM[w] 0x00c: addl Yedx, %eax Fl Dol e[m[w]
0x00d: addl Yedx, Y%eax Flol e[m[w] 0x00e: hal t F| o[e[M[w]
0x00f : hal t Fl o[el m[w]
Cycle 5 Cycle 4
W M
M_valE =10
R[%dx] <10 M_dStE = %edx
v E
M_valE = 3 e valE «0+3=3
M_dStE = %eax E_dstE = veax
. D
: valh < Rlved 00—
D valB «R[%ax] =0
valA «R[o%edx] =0%] Error
valB «R[%eax] = 0 25 %
: e Branch Misprediction Trace
Branch Misprediction Example P
deno-j 1 2 3 4 5 6 7 8 9
demo-j . ys 0x000: xorl vax,%ax [F[D[E[M[W
0x002: jne t # Not taken ‘ FIlp|eE|[™M]|w
X 0x011: t: irmovl $3, %dx # Target F D E M| W
0x000: ?(0” Yeax, Yeax 0x017 irmovl $4, Y%cx # Target+l Flo|e[m[w]
0x002: Ine t # Not taken 0x007: irmovl $1, %ax # Fall Through Flo e [m[w]
0x007: irnovl $1, %ax # Fall through
0x00d: nop
0x00e: nop
0x00f : nop
0x010: hal t m Incorrectly execute two
0x011: t: irnmovl $3, %edx # Target (Should not execute) instructions at branch target
0x017: irnovl $4, %cx # Shoul d not execute E
0x01d: irnovl $5, %dx # Shoul d not execute valE « 3
dSIE = Y%edx
= Should only execute first 8 instructions D
valC =4
dstE = %ecx
F
valC « 1
27 1B « %ax 28
dem-ret. ys Incorrect Return Example
Return Example + doroco
0x000: irmovl Stack, %esp # Intialize stack pointer 0x023: ret ‘ 3 | DIEIM[wW
0x006: nop # Avoi d hazard on %sp 0x024: irmovl $1, %eax #cnps!\ F|D|E|M|W
0x007: nop 0x02a: irmovl $2,%cx # Cops! FlD|E|mM|wW
0x008: nop 0x030. irmovl $3,%dx # Qops! Flp[E[M][w]
0x009: call p # Procedure call 0x00e irmovl $5 %si # Return F|D K
0x00e: irmovl $5, %esi # Return point
0x014: hal t
0x020: .pos 0x20 L !ncorreqtly execute 3
0x020: p: nop # procedure instructions following r et L/
0x021: nop valM = 0x0e
0x022: nop v
0x023: ret valE = 1
0x024: irmovl $1, %eax # Shoul d not be executed dtE = %eax
0x02a: irmovl $2, %ecx # Shoul d not be executed E
0x030: irmovl $3, %edx # Shoul d not be executed ValE « 2
0x036: irmovl $4, %ebx # Shoul d not be executed OSIE = Yecx
0x100: .pos 0x100 D
0x100: Stack: # Stack: Stack pointer T
= Require lots of nops to avoid data hazards F
valC « 5
29 B « Y%esi 30

Page 5

Pipeline Summary

Concept
m Break instruction execution into 5 stages
= Run instructions through in pipelined mode

Limitations
= Can’t handle dependencies between instructions when
instructions follow too closely

= Data dependencies
® One instruction writes register, later one reads it

= Control dependency
@ Instruction sets PC in way that pipeline did not predict correctly
e Mispredicted branch and return
Fixing the Pipeline
m We'll do that next

31

Page 6

