CSCE 230J

Computer Organization

Processor Architecture II: Logic Design

Dr. Steve Goddard goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

Giving credit where credit is due

- Most of slides for this lecture are based on slides created by Dr. Bryant, Carnegie Mellon University.
- ■I have modified them and added new slides.

2

Overview of Logic Design

Fundamental Hardware Requirements

- Communication
 - How to get values from one place to another
- Computation
- Storage

Bits are Our Friends

- Everything expressed in terms of values 0 and 1
- Communication
 - Low or high voltage on wire
- Computation
 - Compute Boolean functions
- Storage
 - Store bits of information

Digital Signals

- Use voltage thresholds to extract discrete values from continuous signal
- Simplest version: 1-bit signal
 - Either high range (1) or low range (0)
 - With guard range between them
- Not strongly affected by noise or low quality circuit elements
 - Can make circuits simple, small, and fast

Computing with Logic Gates

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs
- With some, small delay
 Rising Delay
 Falling Delay
 Voltage

Acyclic Network of Logic Gates Continously responds to changes on primary inputs Primary outputs become (after some delay) Boolean functions of primary inputs

Hardware Control Language

- Very simple hardware description language
- Can only express limited aspects of hardware operation
 - Parts we want to explore and modify

Data Types

- bool: Boolean
 - a, b, c, ...
- int: words
 - A, B, C, ...
 - Does not specify word size---bytes, 32-bit words, ...

Statements

- bool a = bool-expr ;
- int A = int-expr ;

HCL Operations

■ Classify by type of value returned

Boolean Expressions

- Logic Operations
 - a && b, a || b, !a
- Word Comparisons
 - A == B, A != B, A < B, A <= B, A >= B, A > B
- Set Membership
 - A in { B, C, D }
 - » Same as A == B || A == C || A == D

Word Expressions

- Case expressions
 - [a: A; b: B; c: C]
 - Evaluate test expressions a, b, c, ... in sequence
 - Return word expression A, B, C, ... for first successful test

Summary

Computation

- Performed by combinational logic
- Computes Boolean functions
- Continuously reacts to input changes

Storage

- Registers
 - Hold single words
 - Loaded as clock rises
- Random-access memories
 - Hold multiple words
 - Possible multiple read or write ports
 - Read word when address input changes
 - Write word as clock rises

27