CSCE 230J
Computer Organization

Processor Architecture I:
Y86 Instruction Set Architecture

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new

slides.
Dr. Steve Goddard
goddard@cse.unl.edu
http://cse.unl.edu/~goddard/Courses/CSCE230J
Chapter Outline Coverage
Background The Approach

= Instruction sets
= Logic design

Sequential Implementation

= A simple, but not very fast processor design
Pipelining

m Get more things running simultaneously

Pipelined Implementation
= Make it work

m Work through designs for particular instruction set
® Y86---a simplified version of the Intel IA32 (a.k.a. x86).
e If you know one, you more-or-less know them all
= Work at “microarchitectural” level
® Assemble basic hardware blocks into overall processor
structure
» Memories, functional units, etc.
@ Surround with control logic to make sure each instruction flows
through properly
m Use simple hardware description language to describe
control logic
® Can extend and modify
® Test via simulation

Topics

mY86 ISA
mCISC vs. RISC
mHigh-level overview of MIPS ISA

Instruction Set Architecture

Assembly Language View
m Processor state
® Registers, memory, ...
= Instructions
e addl , novl, |l eal, ...
® How instructions are encoded

Application
Program

Compiler| OS

as bytes
Layer of Abstraction CPU
= Above: how to program machine S
® Processor executes instructions Circuit
in a sequence Design
= Below: what needs to be built -
® Use variety of tricks to make it Chip
run fast Layout

e E.g., execute multiple
instructions simultaneously

Page 1

Y86 Processor State

Program .
registers Congmon Memory
Yeax Y%esi codes
Yecx_| Yedi
Yedx | Y%esp pPC
Yebx Y%ebp []
» Program Registers
® Same 8 as with IA32. Each 32 bits

= Condition Codes
® Single-bit flags set by arithmetic or logical instructions
» OF: Overflow ZF: Zero SF:Negative
= Program Counter
e Indicates address of instruction
= Memory
® Byte-addressable storage array
® Words stored in little-endian byte order

Y86 Instructions

Format

m 1--6 bytes of information read from memory
® Can determine instruction length from first byte
® Not as many instruction types, and simpler encoding
than with 1A32
m Each accesses and modifies some part(s) of the
program state

Encoding Registers

Each register has 4-bit ID

Yeax | 0 Yesi 6
Yecx |1 Yedi 7
Yedx | 2 Yesp | 4
Yebx [3 Yebp | 5

= Same encoding as in IA32

Register ID 8 indicates “no register”
= Will use this in our hardware design in multiple places

Instruction Example

Addition Instruction

Generic Form

Encoded Representation
4
A GOnG ’|/

m Add value in register rA to that in register rB
® Store result in register rB
® Note that Y86 only allows addition to be applied to
register data
m Set condition codes based on result
m Two-byte encoding
® First indicates instruction type
® Second gives source and destination registers
meg., addl %ax, %esi Encoding: 60 06

addl rA,

Arithmetic and Logical Operations

Instruction Code Function Code .
m Refer to generically as

«opl
m Encodings differ only
by “function code”
® Low-order 4 bytes in
first instruction word
m Set condition codes as
side effect

S —
addl rA, rB [6]0]rA]rg] |

Subtract (rA from rB)

subl rA, 1B ﬂ |

And

andl 1A, 18 |

Exclusive-Or

B

xorl rA,

Move Operations

| rrmovl rA, B | Register --> Register
| irnmovl V, rB |3 ‘0 | 8 ‘rB| V | | Immediate --> Register
| rmmovl rA, D(rB)[4 O JrA]rB] D | Register --> Memory
| nrmovl D(1B), rA [5 10 [rAlrB] 5 | | Memory --> Register

m Like the IA32 nov! instruction
= Simpler format for memory addresses
= Give different names to keep them distinct

Page 2

Move Instruction Examples

1A32 Y86 Encoding

nmovl $0xabcd, %edx irnovl $0xabcd, %edx 30 82 cd ab 00 00
nmovl %esp, %ebx rrnovl Y%esp, %ebx 20 43

nmovl -12(%bp), %ecx nrovl -12(%ebp) , Y%ecx 50 15 f4 ff ff ff
movl %esi, 0x41lc(%esp) rmmovl %esi, Ox4lc(%esp) 40 64 1c 04 00 00

nmovl $0xabcd, (%ax) —
nmovl %ax, 12(%ax, %edx) —

novl (%bp, %eax, 4) , %ecx —

Jump Instructions

Jump Unconditionally

| jmp Dest [7]0] Dest] | m Refer to generically as
Jump When Less or Equal “j XX
| irevest [7T1] Dest | | m Encodings differ only
Jump When Less by “function code”
it oest 2] Dest || wBased on values of
Jump When Equal condition codes
[ievest [T3] pest | usame as 1a32
Jump When Not Equal terparts
| jneDest [7]4] Dest] I counterp . X
T e e o e = Encode full destination
| j ge Dest |7‘5| Dest | I address

® Unlike PC-relative
Jump When Greater addressing seen in IA32
| j g Dest |7‘6| Dest |I

Y86 Program Stack

Stack . .
“Bottom” = Region of memory holding

program data
m Used in Y86 (and 1A32) for
supporting procedure calls
m Stack top indicated by %esp

® Address of top stack element
m Stack grows toward lower

Increasing
Addresses

addresses
® Top element is at highest
address in the stack
® When pushing, must first
decrement stack pointer

® When popping, increment stack
Stack “Top” pointer

l—%sp

Stack Operations

| oushl 1A [2TOTALE] |

= Decrement %esp by 4
= Store word from rA to memory at %esp
m Like IA32

Ex |

= Read word from memory at %esp
= Savein rA

m Increment %esp by 4

m Like IA32

Subroutine Call and Return

cal | Dest [8]0] Dest] |

m Push address of next instruction onto stack
m Start executing instructions at Dest
m Like IA32

| ret |

m Pop value from stack

m Use as address for next instruction
m Like IA32

Miscellaneous Instructions

= Don’t do anything

hal t [1]0]

m Stop executing instructions

= |A32 has comparable instruction, but can’t execute it in
user mode

= We will use it to stop the simulator

Page 3

Writing Y86 Code

Try to Use C Compiler as Much as Possible
= Write code in C
m Compile for IA32 with gcc - S
= Transliterate into Y86

Coding Example

= Find number of elements in null-terminated list
int lenl(int a[]);

a— 5043

6125

7395
0

Y86 Code Generation Example

First Try Problem
m Write typical array code = Hard to do array indexing on
Y86
® Since don’t have scaled
/* Find nunber of elements in addressing modes
null-termnated |ist */
int leni(int a[]) L18:
{ incl %ax
int len: cnpl $0, (%edx, Y%eax, 4)
for (len = 0; a[len]; |en++) jne L18

return |en;

}

m Compile withgcc -2 -S

20

Y86 Code Generation Example #2

Y86 Code Generation Example #3

Second Try Result IA32 Code Y86 Code
m Write with pointer code = Don't need to do indexed = Setup = Setup
addressing | en2: | en2:
" - pushl %ebp pushl %ebp # Save %bp
/* Find nunber of el gmenis in xor| Y%ecx, %ecx xor| Y%cx, Y%ecx #len =0
~ nuil-terminated Iist */ 24 movl %esp, %ebp rrmovl %sp, %ebp # Set frame
int len2(int a[]) movl (%dx) , %eax movl 8(%ebp) , %edx nrovl 8(%bp), %edx # Get a
{ int len = 0; incl %eox movl (%edx) , %eax mmovl (%edx), Yeax # Cet *a
b . . j L26 j L26 # Coto entr
while (*a++) [25] i L Z
| ez addl $4, %edx
return Ilen; _testl Yeax, Yeax
} jne L24
m Compile withgcc -2 -S
21 22
Y86 Code Generation Example #4 Y86 Program Structure
irmovl Stack,%esp # Set up stack
IA32 Code Y86 Code rrmovl %sp, Y%ebp # Set up frame = Program starts at
= Loop + Finish u Loop + Finish irmovl List, %edx address 0
- - pushl %edx # Push argunent
L24: L24: call |en2 # Call Function = Must set up stack
movl (%edx), Yeax nrnovl (%dx), Y%eax # Get *a hal t # Halt ® Make sure don't
incl %cx irmovl $1, %si align 4 overwrite code!
addl %si, %ecx # | en++ TS i P
. : . List: # List of elenents | 4 st initialize data
L26: L26: # Entry: i ong 5043
addl $4, %edx irnovl $4, %esi 0 ong 6125 m Can use symbolic
addl %si, %edx # at+ “long 7395 names
testl %ax, Yeax andl %ax, %eax # *a == 0? -Iong 0
jne L24 jne L24 # No- - Loop :
novl %bp, %esp rrovl %bp, %esp # Pop # Function
novl %ecx, Y%eax rrmovl % cx, Y%eax # Rtn len | en2:
popl %ebp popl %ebp ’
ret ret
Allocate space for stack
. pos 0x100
St ack:

Page 4

Assembling Y86 Program

m Generates “object code” file eg. yo
o Actually looks like disassembler output

Simulating Y86 Program

m Instruction set simulator
® Computes effect of each instruction on processor state
® Prints changes in state from original

0x000: 308400010000 | irmovl Stack, %esp # Set up stack
0x006: 2045 | rroovl %sp, %ebp # Set up franme
0x008: 308218000000 | irmovl List, %edx

0x00e: a028 | pushl %edx # Push ar gunent
0x010: 8028000000 | call len2 # Call Function
0x015: 10 | halt # Hal t

0x018: | .align 4

0x018: | List: # List of elenents
0x018: b3130000 | .long 5043

0x01c: ed170000 | .long 6125

0x020: e31c0000 | .long 7395

0x024: 00000000 | .long O

Stopped in 41 steps at PC = 0x16. Exception 'HLT', CC Z=1 S=0 O=0
Changes to registers:

Yeax: 0x00000000 0x00000003
Yecx: 0x00000000 0x00000003
Yedx: 0x00000000 0x00000028
Yesp: 0x00000000 0x000000f ¢
Y%ebp: 0x00000000 0x00000100
Yesi : 0x00000000 0x00000004
Changes to memory:

0x00f 4: 0x00000000 0x00000100
0x00f 8: 0x00000000 0x00000015
0x00f c: 0x00000000 0x00000018

25 26
CISC Instruction Sets RISC Instruction Sets
m Complex Instruction Set Computer = Reduced Instruction Set Computer
= Dominant style through mid-80’s = Internal project at IBM, later popularized by Hennessy
. . . (Stanford) and Patterson (Berkeley)
Stack-oriented instruction set i) i
m Use stack to pass arguments, save program counter Fewer, simpler instructions
= Explicit push and pop instructions = Might take more to get given task done
. . . m Can execute them with small and fast hardware
Arithmetic instructions can access memory) ; i)
= addl %ax, 12(%bx, Y%ecx, 4) Register-oriented instruction set
® requires memory read and write = Many more (typically 32) registers
® Complex address calculation m Use for arguments, return pointer, temporaries
Condition codes Only load and store instructions can access memory
= Set as side effect of arithmetic and logical instructions = Similar to Y86 nr novl and r movl
Philosophy No Condition codes
= Add instructions to perform “typical” programming tasks m Test instructions return 0/1 in register
27 28
MIPS Registers MIPS Instruction Examples
_ _ R-R
s [50 Constant 0 $16 [$s0 [[Re [R [RI Joo000 [Fn |
$1 Sat : Reserved Temp. $17 | $sL
$2 [$v0 $18 | $s2 . X _
s o1 Return Values sio 553 ggx‘%emsaax:s: addu $3, $2, $1 # Register add: $3 = $2+$1
$4 [a0 |7} $20 | $s4 May no("beb R-I
8 ISl | | procenure arguments s21 [T f o ocedures [o [R [»] jImredilatle |
$6 $a2 $22 $s6
$7 [$a3 | | $23 [857 | | addu $3, $2, 3145 # | medi ate add: $3 = $2+3145
gy 2 s | calter save Temp I $3,$2,2 # Shift left: $3 = $2 << 2
so [S1 s25 59 S e ! ert: =
$10 $t2 Caller Save $26 $ko | ~| Reserved for Branch
Te ies: O ing Sy
su [S] | Jemoes | sy [ma] | OeeainaSe o [m [m] afset |
$12 | st4 called procedures $28 [$gp Global Pointer
$13 | $t5 $29 [$sp | | Stack Pointer beq $3, $2, dest # Branch when $3 = $2
s [1[5] reumadaress Load/Store
- - @ [R [R] Of f set |
Iw $3, 16($2) # Load Word: $3 = M $2+16]
sw $3, 16($2) # Store Wrd: M $2+16] = $3
29 30

Page 5

CISC vs. RISC

Original Debate
= Strong opinions!
m CISC proponents---easy for compiler, fewer code bytes

m RISC proponents---better for optimizing compilers, can make
run fast with simple chip design

Current Status
m For desktop processors, choice of ISA not a technical issue
e With enough hardware, can make anything run fast
® Code compatibility more important

= For embedded processors, RISC makes sense
® Smaller, cheaper, less power

31

Summary

Y86 Instruction Set Architecture
= Similar state and instructions as I1A32
= Simpler encodings
= Somewhere between CISC and RISC

How Important is ISA Design?
m Less now than before
e With enough hardware, can make almost anything go fast
= Intel is moving away from 1A32
@ Does not allow enough parallel execution
e Introduced 1A64
» 64-bit word sizes (overcome address space limitations)
» Radically different style of instruction set with explicit
parallelism
» Requires sophisticated compilers

32

Page 6

