
Page 1

Processor Architecture I:
Y86 Instruction Set Architecture

CSCE 230J
Computer Organization

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/CSCE230J

2

Giving credit where credit is due

�Most of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

� I have modified them and added new
slides.

3

Chapter Outline

Background
� Instruction sets

� Logic design

Sequential Implementation
� A simple, but not very fast processor design

Pipelining
� Get more things running simultaneously

Pipelined Implementation
� Make it work

4

Coverage

The Approach
� Work through designs for particular instruction set

� Y86---a simplif ied version of the Intel IA32 (a.k.a. x86).
� If you know one, you more-or-less know them all

� Work at “ microarchitectural” level
� Assemble basic hardware blocks into overall processor

structure
» Memories, functional units, etc.

� Surround with control logic to make sure each instruction flows
through properly

� Use simple hardware description language to describe
control logic
� Can extend and modify
� Test via simulation

5

Topics

�Y86 ISA

�CISC vs. RISC

�High-level overview of MIPS ISA

6

Instruction Set Architecture
Assembly Language View

� Processor state
� Registers, memory, …

� Instructions
� addl , movl , l eal , …
� How instructions are encoded

as bytes

Layer of Abstraction
� Above: how to program machine

� Processor executes instructions
in a sequence

� Below: what needs to be built
� Use variety of tricks to make it

run fast
� E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

Page 2

7

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

Y86 Processor State

� Program Registers
� Same 8 as with IA32. Each 32 bits

� Condition Codes
� Single-bit flags set by arithmetic or logical instructions

» OF: Overflow ZF: Zero SF:Negative

� Program Counter
� Indicates address of instruction

� Memory
� Byte-addressable storage array
� Words stored in little-endian byte order

Program
registers Condition

codes

PC

Memory

OF ZF SF

8

Y86 Instructions

Format
� 1--6 bytes of information read from memory

� Can determine instruction length from first byte
� Not as many instruction types, and simpler encoding

than with IA32

� Each accesses and modifies some part(s) of the
program state

9

Encoding Registers
Each register has 4-bit ID

� Same encoding as in IA32

Register ID 8 indicates “ no register”
� Will use this in our hardware design in multiple places

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

0
1
2
3

6
7
4
5

10

Instruction Example

Addition Instruction

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

� Add value in register rA to that in register rB
� Store result in register rB
� Note that Y86 only allows addition to be applied to

register data

� Set condition codes based on result
� Two-byte encoding

� First indicates instruction type
� Second gives source and destination registers

� e.g., addl %eax, %esi Encoding: 60 06

11

Arithmetic and Logical Operations

� Refer to generically as
“ OPl ”

� Encodings differ only
by “ function code”
� Low-order 4 bytes in

first instruction word

� Set condition codes as
side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xor l rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

12

Move Operations

� Like the IA32 movl instruction

� Simpler format for memory addresses

� Give different names to keep them distinct

r r movl rA, rB 2 0 rA rB Register --> Register

Immediate --> Register
i r movl V, rB 3 0 8 rB V

Register --> Memory
r mmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mr movl D(rB), rA 5 0 rA rB D

Page 3

13

Move Instruction Examples

i r movl $0xabcd, %edx movl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Encoding

r r movl %esp, %ebx movl %esp, %ebx 20 43

mr movl - 12(%ebp) , %ecxmovl - 12(%ebp) , %ecx 50 15 f 4 f f f f f f

r mmovl %esi , 0x41c(%esp)movl %esi , 0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax, %edx)

—movl (%ebp, %eax, 4) , %ecx

40 64 1c 04 00 00

14

Jump Instructions

� Refer to generically as
“ j XX”

� Encodings differ only
by “ function code”

� Based on values of
condition codes

� Same as IA32
counterparts

� Encode full destination
address
� Unlike PC-relative

addressing seen in IA32

j mp Dest 7 0

Jump Unconditionally

Dest

j l e Dest 7 1

Jump When Less or Equal

Dest

j l Dest 7 2

Jump When Less

Dest

j e Dest 7 3

Jump When Equal

Dest

j ne Dest 7 4

Jump When Not Equal

Dest

j ge Dest 7 5

Jump When Greater or Equal

Dest

j g Dest 7 6

Jump When Greater

Dest

15

Y86 Program Stack

� Region of memory holding
program data

� Used in Y86 (and IA32) for
supporting procedure calls

� Stack top indicated by %esp
� Address of top stack element

� Stack grows toward lower
addresses
� Top element is at highest

address in the stack
� When pushing, must first

decrement stack pointer
� When popping, increment stack

pointer

%esp

•

•

•

Increasing
Addresses

Stack “ Top”

Stack
“ Bottom”

16

Stack Operations

� Decrement %esp by 4
� Store word from rA to memory at %esp

� Like IA32

� Read word from memory at %esp

� Save in rA
� Increment %esp by 4
� Like IA32

pushl rA a 0 rA 8

popl rA b 0 rA 8

17

Subroutine Call and Return

� Push address of next instruction onto stack

� Start executing instructions at Dest

� Like IA32

� Pop value from stack

� Use as address for next instruction

� Like IA32

cal l Dest 8 0 Dest

r et 9 0

18

Miscellaneous Instructions

� Don’t do anything

� Stop executing instructions

� IA32 has comparable instruction, but can’t execute it in
user mode

� We will use it to stop the simulator

nop 0 0

hal t 1 0

Page 4

19

Writing Y86 Code

Try to Use C Compiler as Much as Possible
� Write code in C
� Compile for IA32 with gcc - S

� Transliterate into Y86

Coding Example
� Find number of elements in null-terminated list

i nt l en1(i nt a[]) ;

5043

6125

7395

0

a

�� �� 3

20

Y86 Code Generation Example
First Try

� Write typical array code

� Compile with gcc - O2 - S

Problem
� Hard to do array indexing on

Y86
� Since don’t have scaled

addressing modes/ * Fi nd number of el ement s i n
nul l - t er mi nat ed l i s t * /

i nt l en1(i nt a[])
{

i nt l en;
f or (l en = 0; a[l en] ; l en++)

;
r et ur n l en;

}

L18:
i ncl %eax
cmpl $0,(%edx,%eax,4)
j ne L18

21

Y86 Code Generation Example #2
Second Try

� Write with pointer code

� Compile with gcc - O2 - S

Result
� Don’t need to do indexed

addressing

/ * Fi nd number of el ement s i n
nul l - t er mi nat ed l i s t * /

i nt l en2(i nt a[])
{

i nt l en = 0;
whi l e (* a++)

l en++;
r et ur n l en;

}

L24:
movl (%edx) , %eax
i ncl %ecx

L26:
addl $4, %edx
t est l %eax, %eax
j ne L24

22

Y86 Code Generation Example #3
IA32 Code

� Setup
Y86 Code

� Setup

l en2:
pushl %ebp
xor l %ecx, %ecx
movl %esp, %ebp
movl 8(%ebp) , %edx
movl (%edx) , %eax
j mp L26

l en2:
pushl %ebp # Save %ebp
xor l %ecx, %ecx # l en = 0
r r movl %esp, %ebp # Set f r ame
mr movl 8(%ebp) , %edx # Get a
mr movl (%edx) , %eax # Get * a
j mp L26 # Got o ent r y

23

Y86 Code Generation Example #4
IA32 Code

� Loop + Finish
Y86 Code

� Loop + Finish

L24:
movl (%edx) , %eax
i ncl %ecx

L26:
addl $4, %edx

t est l %eax, %eax
j ne L24
movl %ebp, %esp
movl %ecx, %eax
popl %ebp
r et

L24:
mr movl (%edx) , %eax # Get * a
i r movl $1, %esi
addl %esi , %ecx # l en++

L26: # Ent r y:
i r movl $4, %esi
addl %esi , %edx # a++
andl %eax, %eax # * a == 0?
j ne L24 # No- - Loop
r r movl %ebp, %esp # Pop
r r movl %ecx, %eax # Rt n l en
popl %ebp
r et

24

Y86 Program Structure

� Program starts at
address 0

� Must set up stack
� Make sure don’t

overwrite code!

� Must initialize data

� Can use symbolic
names

i r movl St ack, %esp # Set up st ack
r r movl %esp, %ebp # Set up f r ame
i r movl Li st , %edx
pushl %edx # Push ar gument
cal l l en2 # Cal l Funct i on
hal t # Hal t

. al i gn 4
Li st : # Li st of el ement s

. l ong 5043

. l ong 6125

. l ong 7395

. l ong 0

Funct i on
l en2:

. . .

Al l ocat e space f or st ack
. pos 0x100
St ack:

Page 5

25

Assembling Y86 Program

� Generates “ object code” file eg. yo

� Actually looks like disassembler output

uni x> yas eg. ys

0x000: 308400010000 | i r movl St ack, %esp # Set up st ack
0x006: 2045 | r r movl %esp, %ebp # Set up f r ame
0x008: 308218000000 | i r movl Li st , %edx
0x00e: a028 | pushl %edx # Push ar gument
0x010: 8028000000 | cal l l en2 # Cal l Funct i on
0x015: 10 | hal t # Hal t
0x018: | . al i gn 4
0x018: | Li s t : # Li st of el ement s
0x018: b3130000 | . l ong 5043
0x01c: ed170000 | . l ong 6125
0x020: e31c0000 | . l ong 7395
0x024: 00000000 | . l ong 0

26

Simulating Y86 Program

� Instruction set simulator
� Computes effect of each instruction on processor state
� Prints changes in state from original

uni x> yi s eg. yo

St opped i n 41 st eps at PC = 0x16. Except i on ' HLT' , CC Z=1 S=0 O=0
Changes t o r egi st er s:
%eax: 0x00000000 0x00000003
%ecx: 0x00000000 0x00000003
%edx: 0x00000000 0x00000028
%esp: 0x00000000 0x000000f c
%ebp: 0x00000000 0x00000100
%esi : 0x00000000 0x00000004

Changes t o memor y:
0x00f 4: 0x00000000 0x00000100
0x00f 8: 0x00000000 0x00000015
0x00f c: 0x00000000 0x00000018

27

CISC Instruction Sets
� Complex Instruction Set Computer
� Dominant style through mid-80’s

Stack-oriented instruction set
� Use stack to pass arguments, save program counter
� Explicit push and pop instructions

Arithmetic instructions can access memory
� addl %eax, 12(%ebx, %ecx, 4)

� requires memory read and write
� Complex address calculation

Condition codes
� Set as side effect of arithmetic and logical instructions

Philosophy
� Add instructions to perform “ typical” programming tasks

28

RISC Instruction Sets
� Reduced Instruction Set Computer
� Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

Fewer, simpler instructions
� Might take more to get given task done
� Can execute them with small and fast hardware

Register-oriented instruction set
� Many more (typically 32) registers
� Use for arguments, return pointer, temporaries

Only load and store instructions can access memory
� Similar to Y86 mr mov l and r mmovl

No Condition codes
� Test instructions return 0/1 in register

29

MIPS Registers

$0
$1

$2
$3
$4
$5
$6
$7

$8
$9

$10
$11
$12

$13
$14
$15

$0
$at

$v0
$v1
$a0
$a1
$a2
$a3

$t 0
$t 1
$t 2
$t 3
$t 4

$t 5
$t 6
$t 7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16
$17

$18
$19
$20
$21
$22
$23

$24
$25
$26
$27
$28

$29
$30
$31

$s 0
$s 1

$s 2
$s 3
$s 4
$s 5
$s 6
$s 7

$t 8
$t 9
$k0
$k1
$gp

$s p
$s 8
$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer
Callee Save Temp
Return Address

30

MIPS Instruction Examples

Op Ra Rb Of f set

Op Ra Rb Rd Fn00000
R-R

Op Ra Rb I mmedi at e
R-I

Load/Store

addu $3, $2, $1 # Regi st er add: $3 = $2+$1

addu $3, $2, 3145 # I mmedi at e add: $3 = $2+3145

sl l $3, $2, 2 # Shi f t l ef t : $3 = $2 << 2

l w $3, 16($2) # Load Wor d: $3 = M[$2+16]

sw $3, 16($2) # St or e Wor d: M[$2+16] = $3

Op Ra Rb Of f set
Branch

beq $3, $2, dest # Br anch when $3 = $2

Page 6

31

CISC vs. RISC

Original Debate
� Strong opinions!

� CISC proponents---easy for compiler, fewer code bytes

� RISC proponents---better for optimizing compilers, can make
run fast with simple chip design

Current Status
� For desktop processors, choice of ISA not a technical issue

� With enough hardware, can make anything run fast
� Code compatibility more important

� For embedded processors, RISC makes sense
� Smaller, cheaper, less power

32

Summary

Y86 Instruction Set Architecture
� Similar state and instructions as IA32

� Simpler encodings

� Somewhere between CISC and RISC

How Important is ISA Design?
� Less now than before

� With enough hardware, can make almost anything go fast

� Intel is moving away from IA32
� Does not allow enough parallel execution
� Introduced IA64

» 64-bit word sizes (overcome address space limitations)
» Radically different style of instruction set with explicit

parallelism
» Requires sophisticated compilers

