
JDE284, Spring 2008
Homework 4: Optimizing the Performance of a Pipelined Processor
Due: 9:00 PM on Tuesday, March 11 (Part A), Tuesday, March 25

(Part B), and Thursday, April 3 (Part C)

Brady Garvin (bgarvin@cse.unl.edu) is the lead person for this assignment.

1 Introduction

In this lab, you will learn about the design and implementation of a pipelined Y86 processor, optimizing its
performance on a benchmark program. You are allowed to make any semantics-preserving transformations
to the benchmark program, or to make enhancements to the pipelined processor, or both. When you have
completed the lab, you will have a keen appreciation for the interactions between code and hardware that
affect the performance of your programs.

The lab is organized into three parts, each with its own handin. In Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part B, you will extend the SEQ simulator with two
new instructions. These two parts will prepare you for Part C, the heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

1. Start by downloading the filearchlab-handout.tar to a (protected) directory in which you plan
to do your work.

2. Then give the command:tar xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directory:README,Makefile , sim.tar , archlab.ps ,archlab.pdf ,
andsimguide.pdf .

1

3. Next, give the commandtar xvf sim.tar . This will create the directorysim , which contains
your personal copy of the Y86 tools. You will be doing all of your work inside this directory.

4. Finally, change to thesim directory and build the Y86 tools:

unix> cd sim
unix> make clean; make

4 Part A

You will be working in directorysim/misc in this part. There are two programs for you to use:yas , the
Y86 assembler, andyis , the Y86 interpreter. To assemble:

unix> ./yas file.ys

This will create an object filefile.yo with the original assembly code as comments for your convenience.

To interpret the object file:

unix> ./yis file.yo

If you get unexpected results,yis can take an additional argument specifying how many instructions to
execute; that way you can see the program mid-execution. If you need a more powerful debugger and you
have an X11 server, run the SEQ simulator in GUI mode from its directory:

unix> (cd ../seq; ./ssim -g ../misc/file.yo)

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions inexamples.c .

sum.ys: Iteratively sum linked list elements

Write a Y86 program (sum.ys) that iteratively sums the elements of a linked list. Your program should
consist of a main routine that invokes a Y86 function (sum list) that is functionally equivalent to the C
sum list function in Figure 1. Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

2

1 / * linked list element * /
2 typedef struct ELE {
3 int val;
4 struct ELE * next;
5 } * list_ptr;
6

7 / * sum_list - Sum the elements of a linked list * /
8 int sum_list(list_ptr ls)
9 {

10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 / * rsum_list - Recursive version of sum_list * /
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 / * copy_block - Copy src to dest and return xor checksum of src * /
31 int copy_block(int * src, int * dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = * src++;
36 * dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 1:C versions of the Y86 solution functions. See sim/misc/examples.c

3

rsum.ys: Recursively sum linked list elements

Write a recursive version ofsum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum list) that is
functionally equivalent to thersum list function in Figure 1. Test your program using the same three-
element list you used for testinglist.ys .

copy.ys: Copy a source block to a destination block

Write a program (copy.ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of a main routine that calls a Y86function (copy block) that is functionally
equivalent to thecopy block function in Figure 1. Test your program using the following three-element
source and destination blocks:

.align 4
Source block
src:

.long 0x00a

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

5 Part B

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to support two new instructions:iaddl (described
in homework problems 4.32 and 4.34) andleave (described in homework problems 4.33 and 4.35). To
add these instructions, you will modify the fileseq-full.hcl , which implements the version of SEQ
described in the CS:APP textbook. In addition, it contains declarations of some constants that you will need
for your solution.

Your HCL file must begin with a header comment containing the following information:

• Your name andcse login.

• A description of the computations required for theiaddl instruction. Use the descriptions of
irmovl andOPl in Figure 4.16 in the CS:APP text as a guide.

4

• A description of the computations required for theleave instruction. Use the description ofpopl
in Figure 4.18 in the CS:APP text as a guide.

Building and Testing Your Solution

Once you have finished modifying theseq-full.hcl file, then you will need to build a new instance of
the SEQ simulator (ssim) based on this HCL file, and then test it:

• Building a new simulator.You can usemake to build a new SEQ simulator:

unix> make

This builds a version ofssim that uses the control login you specified inseq-full.hcl . To save
typing, we have assignedVERSION=full in the Makefile.

• Testing your solution on a simple Y86 program.For your initial testing, we recommend running a
simple program such asasum.yo in TTY mode, comparing the results against the ISA simulation:

unix> ./ssim -t asum.yo

If the ISA test fails, then you should debug your implementation by single stepping the simulator in
GUI mode:

unix> ./ssim -g asum.yo

• Testing your solution using the benchmark programs.Once your simulator is able to correctly
execute small programs, then you can automatically test it on the Y86 benchmark programs in
../y86-code :

unix> (cd ../y86-code; make testssim)

This will run ssim on the benchmark programs and check for correctness by comparing the resulting
processor state with the state from a high-level ISA simulation. See file../y86-code/README
file for more details.

• Performing regression tests.Once you can execute the benchmark programs correctly, thenyou
should run the extensive set of regression tests in../ptest . To test everything exceptiaddl
andleave :

unix> (cd ../ptest; make SIM=../seq/ssim)

To test your implementation ofiaddl :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-i)

5

1 / *
2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.
4 * /
5 int ncopy(int * src, int * dst, int len)
6 {
7 int count = 0;
8 int val;
9

10 while (len > 0) {
11 val = * src++;
12 * dst++ = val;
13 if (val > 0)
14 count++;
15 len--;
16 }
17 return count;
18 }

Figure 2:C version of the ncopy function. See sim/pipe/ncopy.c.

To test your implementation ofleave :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-l)

To test bothiaddl andleave :

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-il)

For more information on the SEQ simulator refer to the handout CS:APP Guide to Y86 Processor Simulators
(simguide.pdf).

6 Part C

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 2 copies alen -element integer arraysrc to a non-overlappingdst , return-
ing a count of the number of positive integers contained insrc . Figure 3 shows the baseline Y86 version
of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a declaration
of the constant value IIADDL.

Your task in Part C is to modifyncopy.ys andpipe-full.hcl with the goal of makingncopy.ys
run as fast as possible.

You will be handing in two files:pipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

6

1 ### ###############
2 # ncopy.ys - Copy a src block of len ints to dst.
3 # Return the number of positive ints (>0) contained in src.
4 #
5 # Include your name and ID here.
6 #
7 # Describe how and why you modified the baseline code.
8 #
9 ### ###############

10 ncopy: pushl %ebp # Save old frame pointer
11 rrmovl %esp,%ebp # Set up new frame pointer
12 pushl %esi # Save callee-save regs
13 pushl %ebx
14 pushl %edi
15 mrmovl 8(%ebp),%ebx # src
16 mrmovl 12(%ebp),%ecx # dst
17 mrmovl 16(%ebp),%edx # len
18

19 # Loop header
20 xorl %esi,%esi # count = 0;
21 andl %edx,%edx # len <= 0?
22 jle Done # if so, goto Done:
23

24 # Loop body.
25 Loop: mrmovl (%ebx), %eax # read val from src...
26 rmmovl %eax, (%ecx) # ...and store it to dst
27 andl %eax, %eax # val <= 0?
28 jle Npos # if so, goto Npos:
29 irmovl $1, %edi
30 addl %edi, %esi # count++
31 Npos: irmovl $1, %edi
32 subl %edi, %edx # len--
33 irmovl $4, %edi
34 addl %edi, %ebx # src++
35 addl %edi, %ecx # dst++
36 andl %edx,%edx # len > 0?
37 jg Loop # if so, goto Loop:
38

39 Done: rrmovl %esi, %eax
40 popl %edi
41 popl %ebx
42 popl %esi
43 rrmovl %ebp, %esp
44 popl %ebp
45 ret

Figure 3:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

7

• Your name andcse login.

• A high-level description of your code. In each case, describe how and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the following constraints:

• Your ncopy.ys function must work for arbitrary array sizes. You might be tempted to hardwire
your solution for 64-element arrays by simply coding 64 copyinstructions, but this would be a bad
idea because we will be grading your solution based on its performance on arbitrary arrays.

• Your ncopy.ys function must run correctly withYIS. This means that you cannot assign a different
meaning to instructions; you cannot rewrite the ISA. By correctly, we mean that it must correctly copy
thesrc block andreturn (in%eax) the correct number of positive integers.

• Yourpipe-full.hcl implementation must pass the regression tests in../y86-code and../ptest
(without the-il flags that testiaddl andleave).

Other than that, you are free to implement theiaddl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement techniques such as load bypassing. You may make any
semantics-preserving transformations to thencopy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deletingsome instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driverprogram that calls yourncopy function. We
have provided you with thegen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers

will construct the following two useful driver programs:

• sdriver.yo : A small driver programthat tests anncopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt witha value of 3 in register%eaxafter copying
thesrc array.

• ldriver.yo : A large driver programthat tests anncopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program will halt with a value of 62 (0x3e) in register
%eaxafter copying thesrc array.

Each time you modify yourncopy.ys program, you can rebuild the driver programs by typing

8

unix> make drivers

Each time your modify yourpipe-full.hcl file, you can rebuild the simulator by typing

unix> make psim

If you want to rebuild the simulator and the driver programs,type

unix> make

To test your solution in GUI mode on a small 4-element array, type

unix> ./psim -g sdriver.yo

To test your solution on a larger 63-element array, type

unix> ./psim -g ldriver.yo

Once your simulator correctly runs your version ofncopy.ys on these two block lengths, you will want
to perform the following additional tests:

• Testing your driver files on the ISA simulator.Make sure that yourncopy.ys function works prop-
erly with YIS:

unix> cd sim/pipe
unix> make
unix> ../misc/yis sdriver.yo

• Testing your code on a range of block lengths with the ISA simulator. The Perl scriptcorrectness.pl
generates driver files with block lengths from 1 up to some limit (default 64), simulates them with
YIS, and checks the results. It generates a report showing the status for each block length:

unix> ./correctness.pl

If you get incorrect results for some lengthK, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c -f ncopy.ys > driver.ys
unix> make driver.yo
unix> ../misc/yis driver.yo

The program will end with register%eax having value0xaaaa if the correctness check passes,
0xeeee if the count is wrong,0xffff if the count is correct, but the words are not all copied
correctly, and0xbbbb if the callee-save registers are not restored.

• Testing your simulator on the benchmark programs.Once your simulator is able to correctly exe-
cutesdriver.ys and ldriver.ys , you should test it against the Y86 benchmark programs in
../y86-code :

9

unix> (cd ../y86-code; make testpsim)

This will run psim on the benchmark programs and compare results withYIS.

• Testing your simulator with extensive regression tests.Once you can execute the benchmark programs
correctly, then you should check it with the regression tests in ../ptest . For example, if your
solution implements theiaddl instruction, then

unix> (cd ../ptest; make SIM=../pipe/psim TFLAGS=-i)

7 Evaluation

The lab is worth 190 points: 30 points for Part A, 60 points forPart B, and 100 points for Part C.

Part A

Part A is worth 30 points, 10 points for each Y86 solution program. Each solution program will be evaluated
for correctness, including proper handling of the%ebpstack frame register and functional equivalence with
the example C functions inexamples.c .

Part B

This part of the lab is worth 60 points:

• 10 points for your description of the computations requiredfor the iaddl instruction.

• 10 points for your description of the computations requiredfor the leave instruction.

• 10 points for passing the benchmark regression tests iny86-code , to verify that your simulator still
correctly executes the benchmark suite.

• 15 points for passing the regression tests inptest for iaddl .

• 15 points for passing the regression tests inptest for leave .

Part C

This part of the Lab is worth 100 points:

• 20 points each for your descriptions in the headers ofncopy.ys andpipe-full.hcl .

• 60 points for performance. To receive credit here, your solution must be correct, as defined earlier.
That is,ncopy runs correctly withYIS, andpipe-full.hcl passes all tests iny86-code and
ptest .

10

We will express the performance of your function in units ofcycles per element(CPE). That is, if the
simulated code requiresC cycles to copy a block ofN elements, then the CPE isC/N . The PIPE
simulator display the total number of cycles required to complete the program. The baseline version
of thencopy function running on the standard PIPE simulator with a large63-element array requires
1039 cycles to copy 63 elements, for a CPE of1037/63 = 16.49.

Since some cycles are used to set up the call toncopy and to set up the loop withinncopy , you
will find that you will get different values of the CPE for different block lengths (generally the CPE
will drop asN increases). We will therefore evaluate the performance of your function by computing
the average of the CPEs for blocks ranging from 1 to 64 elements. You can use the Perl script
benchmark.pl in thepipe directory to run simulations of yourncopy.ys code over a range of
block lengths and compute the average CPE. Simply run the command

unix> ./benchmark.pl

to see what happens. For example, the baseline version of thencopy function has CPE values
ranging between47.0 and16.48, with an average of18.30. Note that this Perl script does not check
for the correctness of the answer. Use the scriptcorrectness.pl for this. Furthermore, note that
correctness.pl assumes thatiaddl and leave are correctly implemented; if you use these
instructions but have not marked them as legal in the HCL, thecorrectness script may report that your
assembly is correct but the benchmark will yield incorrect readings.

You should be able to achieve an average CPE of less than12.0. Our best version averages6.84. Your
performance points will be computed as660/CPE.

By default, benchmark.pl andcorrectness.pl compile and testncopy.ys . Use the-f
argument to specify a different file name. The-h flag gives a complete list of the command line
arguments.

8 Handin Instructions

• You will be handing in these files; there are three separate handins posted. Do not wait too long to
start parts B and C as they may take longer than you expect.

– Part A:sum.ys , rsum.ys , andcopy.ys .

– Part B:seq-full.hcl .

– Part C:ncopy.ys andpipe-full.hcl .

9 Hints

• By design, bothsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it.

• If you running in GUI mode on a Unix box, make sure that you haveinitialized the DISPLAY envi-
ronment variable. If you connect via thessh protocol (e.g. with PuTTY) and enable X11 forwarding,
this will happen automatically.

11

• With some X servers, the “Program Code” window begins life asa closed icon when you runpsim
or ssim in GUI mode. Simply click on the icon to expand the window.

• With some Microsoft Windows-based X servers, the “Memory Contents” window will not automati-
cally resize itself. You’ll need to resize the window by hand.

• Thepsim andssim simulators terminate with a segmentation fault if you ask them to execute a file
that is not a valid Y86 object file.

• When running in GUI mode, thepsim andssim simulators will single-step past ahalt instruction.

12

