JDE284, Spring 2008
Homework 4: Optimizing the Performance of a Pipelined Pssoe
Due: 9:00 PM on Tuesday, March 11 (Part A), Tuesday, March 25
(Part B), and Thursday, April 3 (Part C)

Brady Garvin bgarvin@cse.unl.edu) is the lead person for this assignment.

1 Introduction

In this lab, you will learn about the design and implementatf a pipelined Y86 processor, optimizing its
performance on a benchmark program. You are allowed to makeemantics-preserving transformations
to the benchmark program, or to make enhancements to théngigggrocessor, or both. When you have
completed the lab, you will have a keen appreciation for tteractions between code and hardware that
affect the performance of your programs.

The lab is organized into three parts, each with its own hanidi Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part By wall extend the SEQ simulator with two
new instructions. These two parts will prepare you for Path€ heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.
Any clarifications and revisions to the assignment will betpd on the course Web page.

3 Handout Instructions

1. Start by downloading the filerchlab-handout.tar to a (protected) directory in which you plan
to do your work.

2. Then give the commandlr xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directorREADMBMakefile ,sim.tar ,archlab.ps ,archlab.pdf ,
andsimguide.pdf

3. Next, give the commantr xvf sim.tar . This will create the directorgim , which contains
your personal copy of the Y86 tools. You will be doing all ofuyavork inside this directory.

4. Finally, change to theim directory and build the Y86 tools:

unix> cd sim
unix> make cl ean; nmake

4 PartA

You will be working in directorysim/misc in this part. There are two programs for you to ugas , the
Y86 assembler, angis , the Y86 interpreter. To assemble:

unix> .lyas file.ys

This will create an object fille.yo with the original assembly code as comments for your coeverd.

To interpret the object file:

unix> .lyis file.yo

If you get unexpected resultgis can take an additional argument specifying how many instns to
execute; that way you can see the program mid-executioroufrieed a more powerful debugger and you
have an X11 server, run the SEQ simulator in GUI mode fromiiextbry:

unix> (cd ../seq; ./ssim-g ../msc/file.yo)

Your task is to write and simulate the following three Y86 gmaims. The required behavior of these pro-
grams is defined by the example C functiongkamples.c

sum ys: Iteratively sum linked list elements

Write a Y86 programgum.ys) that iteratively sums the elements of a linked list. Youngram should
consist of a main routine that invokes a Y86 functigarfLlist) that is functionally equivalent to the C
sumlist function in Figure 1. Test your program using the followihgete-element list:

Sample linked list

.align 4
elel:
.long 0x00a
long ele2
ele2:
.long 0x0b0
long ele3
ele3:
.long 0xc00
dong O

© 00 N o O b~ WDN PP

AD W W WWWWWWWWNDDNDNDNNDNDMNNNNRPRPRRPERRERRERPREPRPRE
P O ©W 0O ~NO OO WNEPOOWNOODMWNEOOOWNOOOOGDMWNDNIEO

*/

/= linked list element * [
typedef struct ELE {
int val,
struct ELE * next;
} *list_ptr;
[+ sum_list - Sum the elements of a linked list
int sum_list(list_ptr |s)
{
int val = O;
while (Is) {
val += Is->val;
Is = Is->next;
}
return val;
}
[+ rsum_list - Recursive version of sum_list
int rsum_list(list_ptr Is)
{
if (s)
return O;
else {
int val = Is->val;
int rest = rsum_list(Is->next);
return val + rest;
}
}
/= copy_block - Copy src to dest and return xor checksum of src
int copy_block(int *src, int *dest, int len)
{
int result = O;
while (len > 0) {
int val = * SIC++;
*dest++ = val;
result "= val;
len--;
}
return result;
}

Figure 1:C versions of the Y86 solution functions

. See sim/misc/examples.c

*/

rsum ys: Recursively sum linked list elements

Write a recursive version gfum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokescarsive Y86 functionréum _list) that is
functionally equivalent to thesum _list function in Figure 1. Test your program using the same three-
element list you used for testidigt.ys

copy. ys: Copy a source block to a destination block

Write a program ¢opy.ys) that copies a block of words from one part of memory to anothen-
overlapping area) area of memory, computing the checksuom) @f all the words copied.

Your program should consist of a main routine that calls a ¥@@tion copy _block) that is functionally
equivalent to theopy _block function in Figure 1. Test your program using the followimgete-element
source and destination blocks:

.align 4
Source block
Src:
.long 0x00a
.long 0x0b0
.long 0xc00
Destination block
dest:
Jong 0x111
long 0x222
.long 0x333
5 PartB

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to suppartrnigw instructions:iaddl (described

in homework problems 4.32 and 4.34) dedve (described in homework problems 4.33 and 4.35). To
add these instructions, you will modify the figeqg-full.hcl , which implements the version of SEQ
described in the CS:APP textbook. In addition, it contaieslarations of some constants that you will need
for your solution.

Your HCL file must begin with a header comment containing tilfving information:
e Your name andse login.

e A description of the computations required for tizaldl instruction. Use the descriptions of
irmovl andOPI in Figure 4.16 in the CS:APP text as a guide.

e A description of the computations required for teave instruction. Use the description pbpl
in Figure 4.18 in the CS:APP text as a guide.
Building and Testing Your Solution

Once you have finished modifying tiseqg-full.hcl file, then you will need to build a new instance of
the SEQ simulatorssim) based on this HCL file, and then test it:

¢ Building a new simulatorYou can usemake to build a new SEQ simulator:
unix> nmake

This builds a version ofsim that uses the control login you specifiedsieq-full.hcl . To save
typing, we have assignedERSION=full in the Makefile.

e Testing your solution on a simple Y86 prograior your initial testing, we recommend running a
simple program such asum.yo in TTY mode, comparing the results against the ISA simufatio

unix> ./ssim-t asumyo

If the ISA test fails, then you should debug your implemdntaby single stepping the simulator in
GUI mode:

unix> ./ssim-g asumyo
e Testing your solution using the benchmark progran@nce your simulator is able to correctly
execute small programs, then you can automatically teshithe Y86 benchmark programs in

..ly86-code

unix> (cd ../y86-code; make testssim

This will runssim on the benchmark programs and check for correctness by comghe resulting
processor state with the state from a high-level ISA sinmatSee file../y86-code/README
file for more details.

e Performing regression testsOnce you can execute the benchmark programs correctly, ythen
should run the extensive set of regression tests/jiest . To test everything excepaddl
andleave :

unix> (cd ../ptest; make SI M= ./seqg/ssim
To test your implementation d@addl

unix> (cd ../ptest; make SI M= ./seq/ssimTFLAGS=-i)

1 /=

2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.

4 x|

5 int ncopy(int *Src, int xdst, int len)
6 {

7 int count = 0;

8 int val;

9

10 while (len > 0) {

11 val = =srct++;

12 *dst++ = val;

13 if (val > 0)

14 count++;

15 len--;

16 }

17 return count;

18 }

Figure 2:C version of the ncopy function. See sim/pipe/ncopy.c.

To test your implementation déave :
unix> (cd ../ptest; make SI M= ./seq/ssimTFLAGS=-1)
To test bothaddl andleave :

unix> (cd ../ptest; make SI M. ./seq/ssimTFLAGS=-il)

For more information on the SEQ simulator refer to the hah@&1APP Guide to Y86 Processor Simulators
(simguide.pdf).

6 PartC

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 2 copieslan -elementinteger arrasrc to a non-overlappinglst , return-
ing a count of the number of positive integers containedrin. Figure 3 shows the baseline Y86 version
of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a dedlamat
of the constant value IIADDL.

Your task in Part C is to modifpcopy.ys andpipe-full.hcl with the goal of makingicopy.ys
run as fast as possible.

You will be handing in two filespipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

© 00 N O O~ WN P

A DA DD DD WWWWWWWWWWNDNDNDNNNDMNNNNMNNRERRREPRERERPRPRPRPR
O » WNEFP OO 0ONOO OO WNPEPOOOWNOOOGDRAWNREOOOOWNOOOGDMOWDNLEREO

HHHHHH AR R BHHHHHH R

#
#
#
#
#
#
#

Include your name and ID here.

ncopy.ys - Copy a src block of len ints to dst.
Return the number of positive ints (>0) contained in src.

Describe how and why you modified the baseline code.

RHR AR HHHHHHH AR R R AR AR AR R AR R BRI

ncopy:

Loop:

Npos:

Done:

pushl %ebp

rrmovl %esp,%ebp
pushl %esi

pushl %ebx

pushl %edi

mrmovl 8(%ebp),%ebx
mrmovl 12(%ebp),%ecx
mrmovl 16(%ebp),%edx

Loop header

xorl %esi,%esi

andl %edx,%edx
jle Done

Loop body.
mrmovl (%ebx), %eax
rmmovl %eax, (%ecx)
andl %eax, %eax
jle Npos

irmovl $1, %edi
addl %edi, %esi
irmovl $1, %edi

subl %edi, %edx
irmovl $4, %edi
addl %edi, %ebx
addl %edi, %ecx
andl %edx,%edx

jg Loop

rrmovl %esi, %eax
popl %edi

popl %ebx

popl %esi

rrmovl %ebp, %esp
popl %ebp

ret

Save old frame pointer
Set up new frame pointer
Save callee-save regs

src
dst
len

count = O;
len <= 0?
if so, goto Done:

read val from src...
...and store it to dst
val <= 07
if so, goto Npos:

count++
len--
src++
dst++

len > 07?
if so, goto Loop:

Figure 3:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

e Your name andse login.

¢ A high-level description of your code. In each case, desdnitow and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the feilay constraints:

e Your ncopy.ys function must work for arbitrary array sizes. You might benpged to hardwire
your solution for 64-element arrays by simply coding 64 copstructions, but this would be a bad
idea because we will be grading your solution based on ifepeance on arbitrary arrays.

e Yourncopy.ys function must run correctly witlr1s. This means that you cannot assign a different
meaning to instructions; you cannot rewrite the ISA. By eotlly, we mean that it must correctly copy
thesrc blockandreturn (in%eax) the correct number of positive integers.

e Your pipe-full.hcl implementation must pass the regression testsi86-code and../ptest
(without the-il flags that testaddl andleave).

Other than that, you are free to implement ithédl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement teghes such as load bypassing. You may make any
semantics-preserving transformations torkcepy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deletsmme instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driygpgram that calls youncopy function. We
have provided you with thgen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers
will construct the following two useful driver programs:

e sdriver.yo : A smalldriver programthat tests ancopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt wighvalue of 3 in registeboeax after copying
thesrc array.

e [driver.yo . A large driver programthat tests amcopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program willthsith a value of 62 0x3e) in register
%eax after copying thesrc array.

Each time you modify youncopy.ys program, you can rebuild the driver programs by typing

unix> make drivers

Each time your modify youpipe-full.hcl file, you can rebuild the simulator by typing
unix> make psim

If you want to rebuild the simulator and the driver progratgpge

unix> make

To test your solution in GUI mode on a small 4-element arget

unix> .Ipsim-g sdriver.yo

To test your solution on a larger 63-element array, type

unix> .Ipsim-g ldriver.yo

Once your simulator correctly runs your versionngiopy.ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the ISA simulatdake sure that youncopy.ys function works prop-
erly with vis:

unix> cd sin pi pe
unix> make
unix> ..Imsc/yis sdriver.yo

e Testing your code on a range of block lengths with the ISAlaiimu The Perl scriptorrectness.pl
generates driver files with block lengths from 1 up to somatl{ehefault 64), simulates them with
YIS, and checks the results. It generates a report showingahesdgbr each block length:

unix> ./ correctness. pl

If you get incorrect results for some lengffi, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c -f ncopy.ys > driver.ys
unix> make driver.yo
unix> ..Imsclyis driver.yo

The program will end with registe¥eax having valueOxaaaa if the correctness check passes,
Oxeeee if the count is wrong0xffff if the count is correct, but the words are not all copied
correctly, andxbbbb if the callee-save registers are not restored.

e Testing your simulator on the benchmark progran@nce your simulator is able to correctly exe-
cutesdriver.ys andldriver.ys , You should test it against the Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; nmake testpsim

This will run psim on the benchmark programs and compare results with

e Testing your simulator with extensive regression téstce you can execute the benchmark programs
correctly, then you should check it with the regressionst@st./ptest . For example, if your
solution implements thaddl instruction, then

unix> (cd ../ptest; make SI M. ./ pipel/psimTFLAGS=-i)

7 Evaluation

The lab is worth 190 points: 30 points for Part A, 60 pointsPart B, and 100 points for Part C.

Part A

Part A is worth 30 points, 10 points for each Y86 solution pamg. Each solution program will be evaluated
for correctness, including proper handling of #ebpstack frame register and functional equivalence with
the example C functions iexamples.c

Part B

This part of the lab is worth 60 points:

10 points for your description of the computations requigdheiaddl instruction.

10 points for your description of the computations requigdheleave instruction.

10 points for passing the benchmark regression test86rcode , to verify that your simulator still
correctly executes the benchmark suite.

15 points for passing the regression testptest for iaddl

15 points for passing the regression testptest for leave .

Part C

This part of the Lab is worth 100 points:

e 20 points each for your descriptions in the headenmscofpy.ys andpipe-full.hcl

e 60 points for performance. To receive credit here, yourtsmlumust be correct, as defined earlier.
That is,ncopy runs correctly withvis, andpipe-full.hcl passes all tests p86-code and
ptest

10

We will express the performance of your function in unitxpéles per elemedCPE). That is, if the
simulated code requirgS cycles to copy a block oN elements, then the CPE {$/N. The PIPE
simulator display the total number of cycles required to plate the program. The baseline version
of thencopy function running on the standard PIPE simulator with a |&8e&lement array requires
1039 cycles to copy 63 elements, for a CPE@37/63 = 16.49.

Since some cycles are used to set up the caticlmpy and to set up the loop withincopy , you
will find that you will get different values of the CPE for diffent block lengths (generally the CPE
will drop as NV increases). We will therefore evaluate the performanceof junction by computing
the average of the CPEs for blocks ranging from 1 to 64 elesnelfbu can use the Perl script
benchmark.pl inthepipe directory to run simulations of yourcopy.ys code over a range of
block lengths and compute the average CPE. Simply run thenzord

unix> ./ benchmar k. pl

to see what happens. For example, the baseline version afcithygy function has CPE values
ranging betweerd7.0 and16.48, with an average 0f8.30. Note that this Perl script does not check
for the correctness of the answer. Use the sadptectness.pl for this. Furthermore, note that
correctness.pl assumes thaaddl andleave are correctly implemented; if you use these
instructions but have not marked them as legal in the HCL¢theectness script may report that your
assembly is correct but the benchmark will yield incorreetdings.

You should be able to achieve an average CPE of lesslthanOur best version averagés4. Your
performance points will be computed é80/C PE.

By default, benchmark.pl andcorrectness.pl compile and teshcopy.ys . Use the-f
argument to specify a different file name. THe flag gives a complete list of the command line
arguments.

8 Handin Instructions
¢ You will be handing in these files; there are three separateiha posted. Do not wait too long to
start parts B and C as they may take longer than you expect.

— Part A:sum.ys ,rsum.ys , andcopy.ys
— Part B:seqg-full.hcl
— Part C:ncopy.ys andpipe-full.hcl

9 Hints
e By design, botlsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it

e If you running in GUI mode on a Unix box, make sure that you hiawtgalized the DISPLAY envi-
ronment variable. If you connect via teeh protocol (e.g. with PuTTY) and enable X11 forwarding,
this will happen automatically.

11

With some X servers, the “Program Code” window begins lif@a@osed icon when you rymsim
orssim in GUI mode. Simply click on the icon to expand the window.

With some Microsoft Windows-based X servers, the “Memorynteéats” window will not automati-
cally resize itself. You'll need to resize the window by hand

Thepsim andssim simulators terminate with a segmentation fault if you agiihio execute a file
that is not a valid Y86 object file.

When running in GUI mode, thasim andssim simulators will single-step pasttalt instruction.

12

