JDE284, Spring 2008
Homework 2: Defusing a Binary Bomb
Due: 9:00 PM on Tuesday, February 19

Brady Garvin bgarvin@cse.unl.edu) is the lead person and bomb squad chief for this lab.

1 Introduction

The nefariouDr. Evil has planted a slew of “binary bombs” on our machines. A bitenyb is a program
that consists of a sequence of phases. Each phase expedtstype a particular string ogtdin. If you

type the correct string, then the phaseléfused and the bomb proceeds to the next phase. Otherwise, the
bombexplodes by printing"BOOM!!!" and then terminating. The bomb is defused when every phase ha
been defused.

There are too many bombs for us to deal with, so we are giving geoup a bomb to defuse. Your mission,
which you have no choice but to accept, is to defuse your boeforé the due date. Good luck, and
welcome to the bomb squad!

Step 1: Get Your Bomb

Each group of students will attempt to defuse their own pabkped bomb. Each bomb is a Linux binary
executable file that has been compiled from a C program. Tarolgour group’s bomb, one (and only one)
of the group members should point your Web browser to the bagibest daemon at

http://osage.unl.edu:22222

Fill out the HTML form with the email addresses and names afryj@am members, and then submit the
form by clicking the “Submit” button. The request daemonl Wwilild your bomb and return it immediately
to your browser in dar file calledbombk.tar , wherek is the unique number of your bomb.

Save thebombk.tar file to a (protected) directory in which you plan to do your woiThen give the
commandtar xvf bombk.tar . This will create a directory calledbombk with the following files:

¢ READMHdentifies the bomb and its owners.

e bomb: The executable binary bomb.

e bomb.c : Source file with the bomb’s main routine.

If you change groups, simply request another bomb and war'tl@aut the duplicate assignments later on
when we grade the lab.

Also, if you make any kind of mistake requesting a bomb (sigchemlecting to save it or typing the wrong
group members), simply request another bomb.

Step 2: Defuse Your Bomb

Your job is to defuse the bomb.

You can use many tools to help you with this; please look ahthts section for some tips and ideas. The
best way is to use your favorite debugger to step throughitassembled binary.

Each time your bomb explodes it notifies the TAs, and you Iddeptint (up to a max of 10 points) in the
final score for the lab. So there are consequences to expltitinbomb. You must be careful!

Each phase is worth 10 points, for a total of 60 points.

The phases get progressively harder to defuse, but thetisegpgou gain as you move from phase to phase
should offset this difficulty. However, the last phase wilbtlenge even the best students, so please don't
wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb wittoanmand line argument, for example,
linux> ./ bomb psol .t xt

then it will read the input lines fronpsol.txt until it reaches EOF (end of file), and then switch over
to stdin . In a moment of weakness, Dr. Evil added this feature so yout thave to keep retyping the
solutions to phases you have already defused.

To avoid accidently detonating the bomb, you will need tordaow to single-step through the assembly
code and how to set breakpoints. You will also need to leam tooinspect both the registers and the
memory states. One of the nice side-effects of doing the daihat you will get very good at using a

debugger. This is a crucial skill that will pay big dividenttie rest of your career.

Logistics

As usual, you may work in a group of up to 2 people.
Any clarifications and revisions to the assignment will betpd on the class Web page.

You should do the assignment osage.unl.edu . In fact, there is a rumor that Dr. Evil really is evil,
and the bomb will always blow up if run elsewhere. There axeisd other tamper-proofing devices built
into the bomb as well, or so they say.

Hand-In

There is no explicit hand-in. The bomb will notify the TAs antatically after you have successfully defused
it. You can keep track of how you (and the other groups) aregiby looking at

http://cse.unl.edu/"jde284/hw/bomb_status.html

This web page is updated continuously to show the progresaaf group.

Hints (Pleaseread this!)

There are many ways of defusing your bomb. You can examimegteat detail without ever running the
program, and figure out exactly what it does. This is a usefthiiique, but it not always easy to do. You
can also run it under a debugger, watch what it does step pyaste use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one requegilease do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for saiveFasons:

¢ You lose 1/4 point (up to a max of 10 points) every time you gumesorrectly and the bomb explodes.

e Every time you guess wrong, a message is sent to the staff. cdold very quickly saturate the
network with these messages, and cause the system adatonistio revoke your computer access.

¢ We haven't told you how long the strings are, nor have we toldlwhat characters are in them. Even
if you made the (wrong) assumptions that they all are less 8@acharacters long and only contain
letters, then you will have6®® guesses for each phase. This will take a very long time toand,
you will not get the answer before the assignment is due.

There are many tools which are designed to help you figureaihtiow programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you rfiagt useful in analyzing your bomb, and
hints on how to use them.

e gdb
The GNU debugger, this is a command line debugger tool dlailan virtually every platform. You
can trace through a program line by line, examine memory egidters, look at both the source code
and assembly code (we are not giving you the source code fet aigour bomb), set breakpoints,
set memory watch points, and write scripts. Here are sorsddipusinggdb .

— To keep the bomb from blowing up every time you type in a wramaut, you'll want to learn
how to set breakpoints.

— The course site has http://www.cse.unl.edu/"goddard/Courses/CSCE310J/
StandardHandouts/gdb_refcard.pdf a very handy single-paggdb summary.

— For other documentation, typéélp ” at the gdb command prompt, or typerian gdb”, or
“info gdb "ata Unix prompt. Some people also like to rgadb undergdb-mode in emacs.
e objdump -t
This will print out the bomb’s symbol table. The symbol talrleludes the names of all functions and
global variables in the bomb, the names of all the functibrestiomb calls, and their addresses. You
may learn something by looking at the function names!
e objdump -d

Use this to disassemble all of the code in the bomb. You canjast look at individual functions.
Reading the assembler code can tell you how the bomb works.

Althoughobjdump -d gives you a lot of information, it doesn't tell you the whokery. Calls to
system-level functions are displayed in a cryptic form. &mmple, a call t@scanf might appear
as:

8048c36: €8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was $scanf , you would need to disassemble witlgdb .

e strings
This utility will display the printable strings in your bomb

Looking for a particular tool? How about documentation? Dfmrget, the commandapropos andman
are your friends. In particulaman ascii might come in useful. Also, the Web may also be a treasure
trove of information. If you get stumped, feel free to ask Thes for help.

