
CSCE 230J, Spring 2004
Homework 1: Manipulating Bits

Assigned: Jan. 22, Due: Thur., Feb. 05, 9:00PM

Byron Blunk (bblunk@unlnotes.unl.edu) is the lead person for this assignment.

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in working your way through them.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page.

Hand Out Instructions

You will need access to a machine running Linux, or FreeBSD. If you do not have a machine of your own,
you can use huron.unl.edu for your work.

Start by copying datalab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the command: tar xvf datalab-handout.tar. This will cause a number of files to be
unpacked in the directory. The only file you will be modifying and turning in is bits.c.

The file btest.c allows you to evaluate the functional correctness of your code. The file README contains
additional documentation about btest. Use the command make btest to generate the test code and run
it with the command ./btest. The file dlc is a compiler binary that you can use to check your solutions
for compliance with the coding rules. The remaining files are used to build btest.

Looking at the file bits.c you’ll notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

1



The bits.c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight
operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled with GCC and run and tested on a machine running Unix. Your score will be
computed out of a maximum of 75 points based on the following distribution:

40 Correctness of code running on one of the class machines.

30 Performance of code, based on number of operators used in each function.

5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test arguments in btest.c. You will get full
credit for a puzzle if it passes all of the tests performed by btest.c, half credit if it fails one test, and no
credit otherwise.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function.

2



Name Description Rating Max Ops
bitAnd(x,y) (x & y) using only | and ˜ 1 8
bitXor(x,y) ˆ using only & and ˜ 2 14
isEqual(x,y) return 1 if x == y, 0 otherwise 2 5
evenBits() return word with all even-number bits = 1 2 8
bitMask(highbit,lowbitx) Generate a mask of all 1’s 3 16
conditional(x,y,z) same as x ? y : z 3 16
bitParity(x) returns 1 if x contains an odd number of 0’s 4 20
logicalNeg(x) implement the ! operator, without using ! 4 12

Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops
isZero(x) returns 1 if x == 0, and 0 otherwise 1 2
negate(x) return -x 2 5
fitsbits(x, n) returns 1 if x can fit in n bits 2 15
isPositive(x) x > 0? 3 8
isLess(x, y) returns 1 if x < y 3 24
sm2tc(x) Convert from sign magnitude to 2s complement 4 15
satAdd(x,y) Adds 2 numbers, accounting for overflow 4 30

Table 2: Arithmetic Functions

Function bitAnd computes the AND function. That is, when applied to arguments x and y, it returns
(x&y). You may only use the operators | and ˜. Function bitXor should duplicate the behavior of the
bit operation ˆ, using only the operations & and ˜.

Function isEqual compares x to y for equality. As with all predicate operations, it should return 1 if the
tested condition holds and 0 otherwise.

Function evenBits returns a word with all evennumbered bits set to 1.

Function bitMask generates a mask consisting of all 1’s between lowbit and highbit.

Function conditionalperforms the same function as the ternary (or trinary) operator in c/c++. x ? y : z
evaluates to if x, return y, else return z.

Function bitParity returns 1 if x contains an odd number of 0’s. Function logicalNeg computes
logical negation without using the ! operator.

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers.

Function isZero determines whether x is zero or nonzero.

3



Function negate returns the negation of x. e.g. negate(1) = -1

Function fitsBits determines whether x can be represented as an n-bit, two’s complement integer.

Function isPositive determines whether x is less than or equal to 0.

Function isLess determines whether x is less than y.

Function sm2tc Converts x from sign-magnitude to two’s complement where the MSB is the sign bit.

Function satAdd adds two numbers, but when positive overflow occurs returns maximum possible value,
and when negative overflow occurs returns miniumum positive value.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on our class machines. If it doesn’t compile, we
can’t grade it.

The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type ./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc:

• The dlc program runs silently unless it detects a problem.

• Don’t include <stdio.h> in your bits.c file, as it confuses dlc and results in some non-intuitive
error messages.

Check the file README for documentation on running the btest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest
to test only a single function, e.g., ./btest -f isPositive.

Hand In Instructions

• Make sure you have included your identifying information in your file bits.c.

• Remove any extraneous print statements.

• In order to be graded for this assignment, you must turn in bits.c

• Use the webhandin program to submit bits.c before the deadline.

4


