Title: Adverserial Search
AIMA: Chapter 5 (Sections 5.1, 5.2 and 5.3)
Outline

- Introduction
- Minimax algorithm
- Alpha-beta pruning
Context

- In an MAS, agents affect each other’s welfare
- Environment can be cooperative or competitive
- Competitive environments yield adversarial search problems (games)
- Approaches: mathematical game theory and AI games
Game theory vs. AI

- AI games: fully observable, deterministic environments, players alternate, utility values are equal (draw) or opposite (winner/loser)
 In vocabulary of game theory: deterministic, turn-taking, two-player, zero-sum games of perfect information

- Games are attractive to AI: states simple to represent, agents restricted to a small number of actions, outcome defined by simple rules
 Not croquet or ice hockey, but typically board games
 Exception: Soccer (Robocup www.robocup.org/)
Board game playing: an appealing target of AI research

Board game: Chess (since early AI), Othello, Go, Backgammon, etc.

- Easy to represent
- Fairly small numbers of well-defined actions
- Environment fairly accessible
- Good abstraction of an enemy, w/o real-life (or war) risks :—)

But also: Bridge, ping-pong, etc.
Characteristics

- ‘Unpredictable’ opponent: contingency problem (interleaves search and execution)
- Not the usual type of ‘uncertainty’: no randomness/no missing information (such as in traffic) but, the moves of the opponent expectedly non benign
- Challenges:
 - huge branching factor
 - large solution space
 - Computing optimal solution is infeasible
 - Yet, decisions must be made. Forget A*...
Discussion

- What are the theoretically best moves?
- Techniques for choosing a good move when time is tight
 - Pruning: ignore irrelevant portions of the search space
 - Evaluation function: approximate the true utility of a state without doing search
Two-person Games

- 2 player: Min and Max
- Max moves first
- Players alternate until end of game
- Gain awarded to player/penalty given to loser

Game as a search problem:

- Initial state: board position & indication whose turn it is
- Successor function: defining legal moves a player can take
 Returns \{(move, state)\}^*\}
- Terminal test: determining when game is over
 states satisfy the test: terminal states
- Utility function (a.k.a. payoff function): numerical value for outcome e.g., Chess: win=1, loss=-1, draw=0
Usual search

Max finds a sequence of operators yielding a terminal goal scoring winner according to the utility function

Game search

- Min actions are significant
 Max must find a strategy to win regardless of what Min does:
 \[\rightarrow\] correct action for Max for each action of Min

- Need to approximate (no time to envisage all possibilities difficulty): a huge state space, an even more huge search space

 \[\begin{align*}
 &10^{40} \text{ different legal positions} \\
 &\text{Average branching factor=35, 50 moves/player= } 35^{100}
 \end{align*}\]

- Performance in terms of time is very important
Example: Tic-Tac-Toe

Max has 9 alternative moves

Terminal states’ utility: Max wins=1, Max loses = -1, Draw = 0
Example: 2-ply game tree

Max’s actions: a_1, a_2, a_3
Min’s actions: b_1, b_2, b_3

Minimax algorithm determines the optimal strategy for Max → decides which is the best move
Minimax algorithm

- Generate the whole tree, down to the leaves
- Compute utility of each terminal state
- Iteratively, from the leaves up to the root, use utility of nodes at depth d to compute utility of nodes at depth $(d - 1)$:
 - MIN ‘row’: minimum of children
 - MAX ‘row’: maximum of children

$\text{MINIMAX-VALUE } (n) = \begin{cases}
\text{UTILITY}(n) & \text{if } n \text{ is a terminal node} \\
\max_{s \in \text{Succ}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a Max node} \\
\min_{s \in \text{Succ}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a Min node}
\end{cases}$
Minimax decision

- MAX’s decision: minimax decision maximizes utility under the assumption that the opponent will play perfectly to his/her own advantage
- Minimax decision maximizes the worst-case outcome for Max (which otherwise is guaranteed to do better)
- If opponent is sub-optimal, other strategies may reach better outcome better than the minimax decision
Minimax algorithm: Properties

- m maximum depth
 - b legal moves
- Using Depth-first search, space requirement is:
 - $O(bm)$: if generating all successors at once
 - $O(m)$: if considering successors one at a time
- Time complexity $O(b^m)$
 - Real games: time cost totally unacceptable
Multiple players games

$\text{UTILITY}(n)$ becomes a vector of the size of the number of players.

For each node, the vector gives the utility of the state for each player to move.

\[
\begin{align*}
\text{to move} & \quad A & \quad B & \quad C \\
& \quad \quad (1, 2, 6) & \quad (1, 2, 6) & \quad (1, 2, 6) \\
A & \quad (4, 2, 3) & \quad (6, 1, 2) & \quad (7, 4, 1) \\
& \quad (1, 2, 6) & \quad (6, 1, 2) & \quad (5, 1, 1) \\
& \quad (5, 4, 5) & \quad (7, 7, 1) & \quad (5, 4, 5)
\end{align*}
\]
Alliance formation in multiple players games

How about alliances?

- A and B in weak positions, but C in strong position
 A and B make an alliance to attack C (rather than each other
 → Collaboration emerges from purely selfish behavior!

- Alliances can be done and undone (careful for social stigma!)

- When a two-player game is not zero-sum, players may end up
 automatically making alliances (for example when the terminal
 state maximizes utility of both players)
Alpha-beta pruning

- Minimax requires computing all terminal nodes: unacceptable

- Do we really need to do compute utility of all terminal nodes? ... No, says John McCarthy in 1956:

 It is possible to compute the correct minimax decision without looking at every node in the tree, and yet get the correct decision

- Use pruning (eliminating useless branches in a tree)
Example of alpha-beta pruning

Try 14, 5, 2, 6 below D
General principal of Alpha-beta pruning

If Player has a better choice m at \[\begin{cases}
\text{— a parent node of } n \\
\text{— any choice point further up}
\end{cases} \]

n will never be reached in actual play

Once we have found enough about n (e.g., through one of its descendants), we can prune it (i.e., discard all its remaining descendants)
Mechanism of Alpha-beta pruning

α: value of best choice so far for MAX, (maximum)
β: value of best choice so far for MIN, (minimum)

Alpha-beta search:
- updates the value of α, β as it goes along
- prunes a subtree as soon as its worse than current α or β
Effectiveness of pruning

Effectiveness of pruning depends on the order of new nodes examined

(a) $\left[-\infty, +\infty \right]$
(b) $\left[-\infty, 3 \right]$
(c) $\left[3, +\infty \right]$
(d) $\left[3, +\infty \right]$
(e) $\left[3, 3 \right]$
(f) $\left[3, 3 \right]$
Savings in terms of cost

- Ideal case:
 Alpha-beta examines $O(b^{d/2})$ nodes (vs. Minimax: $O(b^d)$)
 \rightarrow Effective branching factor \sqrt{b} (vs. Minimax: b)

- Successors ordered randomly:
 $b > 1000$, asymptotic complexity is $O((b/ \log b)^d)$
 b reasonable, asymptotic complexity is $O(b^{3d/4})$

- Practically: Fairly simple heuristics work (fairly) well