Introduction: Logic?

• We will study
 – Propositional Logic (PL)
 – First-Order Logic (FOL)
• Logic
 – is the study of the logic relationships between objects and
 – forms the basis of all mathematical reasoning and all automated reasoning
Introduction: PL?

• Topic
 Propositional Logic (PL) = Propositional Calculus = Sentential Logic

• In PL, the objects are called **propositions**

• **Definition**: A proposition is a **statement** that is either **true** or **false**, but not both

• We usually denote a proposition by a letter: p, q, r, s, \ldots
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Introduction: Proposition

• **Definition:** The value of a proposition is called its truth value; denoted by
 – T or 1 if it is true or
 – F or 0 if it is false

• Opinions, interrogatives, and imperatives are not propositions

• **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>
Propositions: Examples

• The following are propositions
 – Today is Monday \(M \)
 – The grass is wet \(W \)
 – It is raining \(R \)

• The following are not propositions
 – C++ is the best language \(\text{Opinion} \)
 – When is the pretest? \(\text{Interrogative} \)
 – Do your homework \(\text{Imperative} \)
Are these propositions?

- $2+2=5$
- Every integer is divisible by 12
 - ALERT: This statement is not a proposition: we cannot determine whether it is true or false.
- Microsoft is an excellent company
Logical connectives

• Connectives are used to create a compound proposition from two or more propositions
 – Negation (e.g., \(\neg a \) or \(!a\) or \(\bar{a}\)) \(\neg\), \(\bar{\ }\)
 – And or logical conjunction (denoted \(\land\)) \(\land\)
 – OR or logical disjunction (denoted \(\lor\)) \(\lor\)
 – XOR or exclusive or (denoted \(\oplus\)) \(\oplus\)
 – Implication (denoted \(\implies\) or \(\rightarrow\)) \(\Rightarrow\), \(\rightarrow\)
 – Biconditional (denoted \(\iff\) or \(\leftrightarrow\)) \(\Leftarrow\), \(\leftrightarrow\)

• We define the meaning (semantics) of the logical connectives using truth tables
Precedence of Logical Operators

• As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
• However, it is preferable to use parentheses to disambiguate operators and facilitate readability
 \[\neg p \lor q \land \neg r \equiv (\neg p) \lor (q \land (\neg r)) \]
• To avoid unnecessary parenthesis, the following precedences hold:
 1. Negation (\neg)
 2. Conjunction (\land)
 3. Disjunction (\lor)
 4. Implication (\rightarrow)
 5. Biconditional (\leftrightarrow)
Logical Connective: Negation

• $\neg p$, the negation of a proposition p, is also a proposition

• Examples:
 – Today is not Monday
 – It is not the case that today is Monday, etc.

• Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Connective: Logical And

• The logical connective And is true only when both of the propositions are true. It is also called a conjunction.

• Examples
 – It is raining and it is warm
 – (2+3=5) and (1<2)
 – Schroedinger’s cat is dead and Schroedinger’s cat is not dead.

• Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p\land q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Logical OR

• The logical disjunction, or logical OR, is true if one or both of the propositions are true.

• Examples
 – It is raining or it is the second lecture
 – \((2+2=5) \lor (1<2)\)
 – You may have cake or ice cream

• Truth table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \land q)</td>
<td>(p \lor q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Exclusive Or

• The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false

• Example
 – The circuit is either ON or OFF but not both
 – Let $ab<0$, then either $a<0$ or $b<0$ but not both
 – You may have cake or ice cream, but not both

• Truth table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \wedge q$</th>
<th>$p \vee q$</th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Implication (1)

• **Definition:** Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise
 - p is called the hypothesis, antecedent, premise
 - q is called the conclusion, consequence

• **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \Rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Connective: Implication (2)

- The implication of $p \rightarrow q$ can be also read as
 - If p then q
 - p implies q
 - If p, q
 - p only if q
 - q if p
 - q when p
 - q whenever p
 - q follows from p
 - p is a sufficient condition for q (p is sufficient for q)
 - q is a necessary condition for p (q is necessary for p)
Logical Connective: Implication (3)

• Examples
 – If you buy your air ticket in advance, it is cheaper.
 – If x is an integer, then $x^2 \geq 0$.
 – If it rains, the grass gets wet.
 – If the sprinklers operate, the grass gets wet.
 – If $2+2=5$, then all unicorns are pink.
Exercise: Which of the following implications is true?

• If \(-1\) is a positive number, then \(2+2=5\)

 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

• If \(-1\) is a positive number, then \(2+2=4\)

 True. Same as above.

• If you get an 100% on your Midterm 1, then you will have an A\(^+\) in CSCE235

 False. Your grades homework, quizzes, Midterm 2, and Final, if they are bad, would prevent you from having an A\(^+\).
Logical Connective: Biconditional (1)

• **Definition:** The biconditional $p \iff q$ is the proposition that is true when p and q have the same truth values. It is false otherwise.

• Note that it is equivalent to $(p \implies q) \land (q \implies p)$

• **Truth table**

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$p \land q$</td>
<td>$p \lor q$</td>
<td>$p \oplus q$</td>
<td>$p \implies q$</td>
<td>$p \iff q$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Biconditional (2)

• The biconditional $p \iff q$ can be equivalently read as
 – p if and only if q
 – p is a necessary and sufficient condition for q
 – if p then q, and conversely
 – p iff q

• Examples
 – $x>0$ if and only if x^2 is positive
 – The alarm goes off iff a burglar breaks in
 – You may have pudding iff you eat your meat
Exercise: Which of the following biconditionals is true?

- $x^2 + y^2 = 0$ if and only if $x=0$ and $y=0$
 True. Both implications hold

- $2 + 2 = 4$ if and only if $\sqrt{2} < 2$
 True. Both implications hold.

- $x^2 \geq 0$ if and only if $x \geq 0$
 False. The implication “if $x \geq 0$ then $x^2 \geq 0$” holds.
 However, the implication “if $x^2 \geq 0$ then $x \geq 0$” is false.
 Consider $x=-1$.
 The hypothesis $(-1)^2=1 \geq 0$ but the conclusion fails.
Converse, Inverse, Contrapositive

• Consider the proposition $p \rightarrow q$
 – Its converse is the proposition $q \rightarrow p$
 – Its inverse is the proposition $\neg p \rightarrow \neg q$
 – Its contrapositive is the proposition $\neg q \rightarrow \neg p$
Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
 - the individual propositions and
 - the compound propositions based on them

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \Rightarrow q$</th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Constructing Truth Tables

• Construct the truth table for the following compound proposition

\[((p \land q) \lor \neg q) \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p\land q</th>
<th>\neg q</th>
<th>((p \land q) \lor \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Usefulness of Logic

• Logic is more precise than natural language
 – You may have cake or ice cream.
 • Can I have both?
 – If you buy your air ticket in advance, it is cheaper.
 • Are there not cheap last-minute tickets?

• For this reason, logic is used for hardware and software specification or verification
 – Given a set of logic statements,
 – One can decide whether or not they are satisfiable (i.e., consistent), although this is a costly process...
Bitwise Operations

• Computers represent information as bits (binary digits)
• A bit string is a sequence of bits
• The length of the string is the number of bits in the string
• Logical connectives can be applied to bit strings of equal length
• Example

<table>
<thead>
<tr>
<th>0110 1010 1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101 0010 1111</td>
</tr>
</tbody>
</table>

Bitwise OR	0111 1010 1111
Bitwise AND	...
Bitwise XOR	...
Logic in TCS

• **What is SAT?** SAT is the problem of determining whether or not a sentence in propositional logic (PL) is satisfiable.
 – **Given:** a PL sentence
 – **Question:** Determine whether or not it is satisfiable

• Characterizing SAT as an NP-complete problem (complexity class) is at the foundation of Theoretical Computer Science.

• What is a PL sentence? What does satisfiable mean?
Logic in TCS: A Sentence in PL

• A **Boolean variable** is a variable that can have a value 1 or 0. Thus, Boolean variable is a proposition.
• A **term** is a Boolean variable
• A **literal** is a term or its negation
• A **clause** is a disjunction of literals
• A **sentence** in PL is a conjunction of clauses
• Example: \((a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)\)
• A sentence in PL is **satisfiable** iff
 – we can assign a truth value
 – to each Boolean variables
 – such that the sentence evaluates to true (i.e., holds)
SAT in TCS

• Problem
 – Given: A sentence in PL (a complex proposition), which is
 • Boolean variables connected with logical connectives
 • Usually, as a conjunction of clauses (CNF = Conjunctive Normal Form)
 – Question:
 • Find an assignment of truth values [0|1] to the variables
 • That makes the sentence true, i.e. the sentence holds
Logic in Programming: Example 1

• Say you need to define a conditional statement as follows:
 – Increment x if the following condition holds
 \((x > 0 \text{ and } x < 10) \text{ or } x=10\)
• You may try: \textbf{If } (0<x<10 \text{ OR } x=10) \textbf{ x++;}
• Can’t be written in C++ or Java
• How can you modify this statement by using logical equivalence
• Answer: \textbf{If } (x>0 \text{ AND } x<=10) \textbf{ x++;}
Logic in Programming: Example 2

• Say we have the following loop

While
((i<size AND A[i]>10) OR
 (i<size AND A[i]<0) OR
 (i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Is this a good code? Keep in mind:
 – Readability
 – Extraneous code is inefficient and poor style
 – Complicated code is more prone to errors and difficult to debug
 – Solution? Comes later...
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Propositional Equivalences: Introduction

- In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
 - one statement with
 - another equivalent statement
 - (i.e., with the same truth value)
- Below, we discuss
 - Terminology
 - Establishing logical equivalences using truth tables
 - Establishing logical equivalences using known laws (of logical equivalences)
Terminology: Tautology, Contradictions, Contingencies

• Definitions
 – A compound proposition that is always true, no matter what the truth values of the propositions that occur in it is called a tautology
 – A compound proposition that is always false is called a contradiction
 – A proposition that is neither a tautology nor a contradiction is a contingency

• Examples
 – A simple tautology is $p \lor \neg p$
 – A simple contradiction is $p \land \neg p$
Logical Equivalences: Definition

- **Definition**: Propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- Informally, p and q are equivalent if whenever p is true, q is true, and vice versa.
- Notation: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \leftrightarrow q$
- Alert: \equiv is not a logical connective
Logical Equivalences: Example 1

• Are the propositions \((p \rightarrow q)\) and \((\neg p \lor q)\) logically equivalent?

• To find out, we construct the truth tables for each:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p\rightarrow q)</th>
<th>(\neg p)</th>
<th>(\neg p\lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The two columns in the truth table are identical, thus we conclude that \((p \rightarrow q) \equiv (\neg p \lor q)\)
Logical Equivalences: Example 1

• Show that (Exercise 25 from Rosen)

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$p \rightarrow r$</th>
<th>$q \rightarrow r$</th>
<th>$(p \rightarrow r) \lor (q \rightarrow r)$</th>
<th>$p \land q$</th>
<th>$(p \land q) \rightarrow r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Propositional Equivalences: Introduction

• In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
 • one statement with
 • another equivalent statement
 • (i.e., with the same truth value)

• Below, we discuss
 – Terminology
 – Establishing logical equivalences using truth tables
 – Establishing logical equivalences using known laws
 (of logical equivalences)
Logical Equivalences: Cheat Sheet

• Table of logical equivalences can be found in Rosen (Table 6, page 27)
• These and other can be found in a handout on the course web page:
 http://www.cse.unl.edu/~choueiry/LogicalEquivalences3.pdf
• Let’s take a quick look at this Cheat Sheet
Using Logical Equivalences: Example 1

• Logical equivalences can be used to construct additional logical equivalences

• Example: Show that \((p \land q) \rightarrow q\) is a tautology

 0. \((p \land q) \rightarrow q\)
 1. \(\equiv \neg (p \land q) \lor q\) \hspace{1cm} \text{Implication Law on 0}
 2. \(\equiv (\neg p \lor \neg q) \lor q\) \hspace{1cm} \text{De Morgan’s Law (1st) on 1}
 3. \(\equiv \neg p \lor (\neg q \lor q)\) \hspace{1cm} \text{Associative Law on 2}
 4. \(\equiv \neg p \lor 1\) \hspace{1cm} \text{Negation Law on 3}
 5. \(\equiv 1\) \hspace{1cm} \text{Domination Law on 4}
My Advice

• Remove double implication
• Replace implication by disjunction
• Push negation inwards
• Distribute
Using Logical Equivalences: Example 2

- Example (Exercise 17)*: Show that \(\neg(p \leftrightarrow q) \equiv (p \leftrightarrow \neg q) \)
- Sometimes it helps to start with the second proposition \((p \leftrightarrow \neg q)\)

0. \((p \leftrightarrow \neg q)\)
1. \(\equiv (p \rightarrow \neg q) \land (\neg q \rightarrow p)\) \hspace{1cm} \text{Equivalence Law on 0}
2. \(\equiv (\neg p \lor \neg q) \land (q \lor p)\) \hspace{1cm} \text{Implication Law on 1}
3. \(\equiv \neg(\neg((\neg p \lor \neg q) \land (q \lor p)))\) \hspace{1cm} \text{Double negation on 2}
4. \(\equiv \neg(\neg(\neg p \lor \neg q) \lor \neg(q \lor p))\) \hspace{1cm} \text{De Morgan’s Law...}
5. \(\equiv \neg((p \land q) \lor (\neg q \land \neg p))\) \hspace{1cm} \text{De Morgan’s Law}
6. \(\equiv \neg((p \lor \neg q) \land (p \lor \neg p) \land (q \lor \neg q) \land (q \lor \neg p))\) \hspace{1cm} \text{Distribution Law}
7. \(\equiv \neg((p \lor \neg q) \land (q \lor \neg p))\) \hspace{1cm} \text{Identity Law}
8. \(\equiv \neg((q \rightarrow p) \land (p \rightarrow q))\) \hspace{1cm} \text{Implication Law}
9. \(\equiv \neg(p \leftrightarrow q)\) \hspace{1cm} \text{Equivalence Law}

*See Table 8 (p 25) but you are not allowed to use the table for the proof
Using Logical Equivalences: Example 3

• Show that \(\neg(q \rightarrow p) \lor (p \land q) \equiv q \)

0. \(\neg(q \rightarrow p) \lor (p \land q) \)
1. \(\equiv \neg(\neg q \lor p) \lor (p \land q) \)
 Implication Law
2. \(\equiv (q \land \neg p) \lor (p \land q) \)
 De Morgan’s & Double negation
3. \(\equiv (q \land \neg p) \lor (q \land p) \)
 Commutative Law
4. \(\equiv q \land (\neg p \lor p) \)
 Distributive Law
5. \(\equiv q \land 1 \)
 Identity Law
 \(\equiv q \)
 Identity Law
Proving Logical Equivalences: Summary

• Proving two PL sentences A, B are equivalent using \(\text{TT} + \text{EL} \)
 1. Verify that the 2 columns of A, B in the truth table are the same (i.e., A, B have the same models)
 2. Verify that the column of \((A \rightarrow B) \land (B \rightarrow A)\) in the truth table has all 1 entries (it is a tautology)
 3. Apply a sequence of Equivalence Laws
 • Put A, B in CNF, they should be the same
 • Sequence of equivalence laws: Biconditional, implication, moving negation inwards, distributivity
 4. Apply a sequence of Inference Laws
 • Starting from one sentence, usually the most complex one,
 • Until reaching the second sentence
 • And repeat the converse (vice versa)
Logic in Programming: Example 2 (revisited)

• Recall the loop
 While

 $((i < size \text{ AND } A[i] > 10) \text{ OR }$

 $(i < size \text{ AND } A[i] < 0) \text{ OR }$

 $(i < size \text{ AND } (\text{NOT } (A[i] != 0 \text{ AND NOT } (A[i] >= 10))))))$

• Now, using logical equivalences, simplify it!

• Using De Morgan’s Law and Distributivity
 While $((i < size) \text{ AND }$

 $((A[i] > 10 \text{ OR } A[i] < 0) \text{ OR }$

 $(A[i] == 0 \text{ OR } A[i] >= 10)))$

• Noticing the ranges of the 4 conditions of $A[i]$
 While $((i < size) \text{ AND } (A[i] >= 10 \text{ OR } A[i] <= 0))$
Programming Pitfall Note

• In C, C++ and Java, applying the commutative law is not such a good idea.

• For example, consider accessing an integer array A of size n:

```c
if (i<n && A[i]==0) i++;
```

is not equivalent to

```c
if (A[i]==0 && i<n) i++;
```