Introduction to Logic

Sections 1.1, 1.2, 1.3 of Rosen
Spring 2017
CSCE 235H Introduction to Discrete Structures (Honors)
URL: cse.unl.edu/~cse235h
All questions: Piazza
Introduction: Logic?

• We will study
 – Propositional Logic (PL)
 – First-Order Logic (FOL)

• Logic
 – is the study of the logic relationships between objects and
 – forms the basis of all mathematical reasoning and all automated reasoning
Introduction: PL?

• Topic
 Propositional Logic (PL) = Propositional Calculus = Sentential Logic

• In PL, the objects are called propositions

• Definition: A proposition is a statement that is either true or false, but not both

• We usually denote a proposition by a letter:
 \[p, q, r, s, \ldots \]
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables
• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming
• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Introduction: Proposition

• **Definition**: The value of a proposition is called its truth value; denoted by
 – T or 1 if it is true or
 – F or 0 if it is false

• Opinions, interrogatives, and imperatives are not propositions

• **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Propositions: Examples

• The following are propositions
 – Today is Monday \(M \)
 – The grass is wet \(W \)
 – It is raining \(R \)

• The following are not propositions
 – C++ is the best language \(Opinion \)
 – When is the pretest? \(Interrogative \)
 – Do your homework \(Imperative \)
Are these propositions?

• 2+2=5

• Every integer is divisible by 12
 – **ALERT**: This statement is **not** a proposition: we cannot determine whether it is true or false.

• Microsoft is an excellent company
Logical connectives

• Connectives are used to create a compound proposition from two or more propositions
 – Negation (e.g., \(\neg a \) or \(!a \) or \(\bar{a} \)) \(\neg \), \(\bar{\ } \)
 – And or logical conjunction (denoted \(\wedge \)) \(\wedge \)
 – OR or logical disjunction (denoted \(\lor \)) \(\lor \)
 – XOR or exclusive or (denoted \(\oplus \)) \(\oplus \)
 – Implication (denoted \(\Rightarrow \) or \(\to \)) \(\Rightarrow \), \(\to \)
 – Biconditional (denoted \(\iff \) or \(\leftrightarrow \)) \(\Leftarrow \), \(\Leftrightarrow \)

• We define the meaning (semantics) of the logical connectives using truth tables
Precedence of Logical Operators

• As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
• However, it is preferable to use parentheses to disambiguate operators and facilitate readability
 \[\neg p \lor q \land \neg r \equiv (\neg p) \lor (q \land (\neg r)) \]
• To avoid unnecessary parenthesis, the following precedences hold:
 1. Negation (\(\neg\))
 2. Conjunction (\(\land\))
 3. Disjunction (\(\lor\))
 4. Implication (\(\rightarrow\))
 5. Biconditional (\(<\leftrightarrow>\))
Logical Connective: Negation

• $\neg p$, the negation of a proposition p, is also a proposition

• Examples:
 – Today is not Monday
 – It is not the case that today is Monday, etc.

• Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Connective: Logical And

• The logical connective And is true only when both of the propositions are true. It is also called a conjunction.

• Examples
 – It is raining and it is warm
 – \((2+3=5)\) and \((1<2)\)
 – Schroedinger’ s cat is dead and Schroedinger’ s cat is not dead.

• Truth table

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \land q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Logical OR

• The logical disjunction, or logical OR, is true if one or both of the propositions are true.

• Examples
 – It is raining or it is the second lecture
 – (2+2=5) v (1<2)
 – You may have cake or ice cream

• Truth table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>p∧q</td>
<td>p v q</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Logical Connective: Exclusive Or

• The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false

• Example
 – The circuit is either ON or OFF but not both
 – Let $ab<0$, then either $a<0$ or $b<0$ but not both
 – You may have cake or ice cream, but not both

• Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Implication (1)

- **Definition:** Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise
 - p is called the hypothesis, antecedent, premise
 - q is called the conclusion, consequence

- **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \Rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Connective: Implication (2)

• The implication of $p \rightarrow q$ can be also read as
 – If p then q
 – p implies q
 – If p, q
 – p only if q
 – q if p
 – q whenever p
 – q follows from p
 – p is a sufficient condition for q (p is sufficient for q)
 – q is a necessary condition for p (q is necessary for p)
Logical Connective: Implication (3)

• Examples
 – If you buy you air ticket in advance, it is cheaper.
 – If \(x \) is an integer, then \(x^2 \geq 0 \).
 – If it rains, the grass gets wet.
 – If the sprinklers operate, the grass gets wet.
 – If \(2+2=5 \), then all unicorns are pink.
Exercise: Which of the following implications is true?

- If -1 is a positive number, then 2+2=5
 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

- If -1 is a positive number, then 2+2=4
 True. Same as above.

- If you get an 100% on your Midterm 1, then you will have an A+ on CSCE235
 False. Your grades homework, quizzes, Midterm 2, and Final, if they are bad, would prevent you from having an A+.
Logical Connective: Biconditional (1)

• **Definition:** The biconditional \(p \leftrightarrow q \) is the proposition that is true when \(p \) and \(q \) have the same truth values. It is false otherwise.

• Note that it is equivalent to \((p \rightarrow q) \land (q \rightarrow p) \)

• **Truth table**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \land q)</th>
<th>(p \lor q)</th>
<th>(p \oplus q)</th>
<th>(p \Rightarrow q)</th>
<th>(p \leftrightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Biconditional (2)

• The biconditional $p \iff q$ can be equivalently read as
 – p if and only if q
 – p is a necessary and sufficient condition for q
 – if p then q, and conversely
 – p iff q

• Examples
 – $x>0$ if and only if x^2 is positive
 – The alarm goes off iff a burglar breaks in
 – You may have pudding iff you eat your meat
Exercise: Which of the following biconditionals is true?

• \(x^2 + y^2 = 0 \) if and only if \(x=0 \) and \(y=0 \)
 True. Both implications hold

• \(2 + 2 = 4 \) if and only if \(\sqrt{2} < 2 \)
 True. Both implications hold.

• \(x^2 \geq 0 \) if and only if \(x \geq 0 \)
 False. The implication “if \(x \geq 0 \) then \(x^2 \geq 0 \)” holds.
 However, the implication “if \(x^2 \geq 0 \) then \(x \geq 0 \)” is false.
 Consider \(x=-1 \).
 The hypothesis \((-1)^2=1 \geq 0\) but the conclusion fails.
Converse, Inverse, Contrapositive

• Consider the proposition $p \rightarrow q$
 – Its **converse** is the proposition $q \rightarrow p$
 – Its **inverse** is the proposition $\neg p \rightarrow \neg q$
 – Its **contrapositive** is the proposition $\neg q \rightarrow \neg p$
Truth Tables

• Truth tables are used to show/define the relationships between the truth values of
 – the individual propositions and
 – the compound propositions based on them

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>p∧q</th>
<th>p∨q</th>
<th>p⊕q</th>
<th>p⇒q</th>
<th>p⇔q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Constructing Truth Tables

• Construct the truth table for the following compound proposition

\[((p \land q) \lor \neg q) \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$\neg q$</th>
<th>$((p \land q) \lor \neg q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Usefulness of Logic

• Logic is more precise than natural language
 – You may have cake or ice cream.
 • Can I have both?
 – If you buy your air ticket in advance, it is cheaper.
 • Are there or not cheap last-minute tickets?

• For this reason, logic is used for hardware and software specification
 – Given a set of logic statements,
 – One can decide whether or not they are satisfiable (i.e., consistent), although this is a costly process...
Bitwise Operations

- Computers represent information as bits (binary digits)
- A bit string is a sequence of bits
- The length of the string is the number of bits in the string
- Logical connectives can be applied to bit strings of equal length
- Example

 | 0110 1010 1101 |
 | 0101 0010 1111 |

 Bitwise OR 0111 1010 1111
 Bitwise AND ...
 Bitwise XOR ...

Logic in TCS

• **What is SAT?** SAT is the problem of determining whether or not a sentence in propositional logic (PL) is satisfiable.
 - **Given:** a PL sentence
 - **Question:** Determine whether or not it is satisfiable

• Characterizing SAT as an **NP-complete** problem (complexity class) is at the foundation of Theoretical Computer Science.

• What is a PL sentence? What does satisfiable mean?
Logic in TCS: A Sentence in PL

- A **Boolean variable** is a variable that can have a value 1 or 0. Thus, Boolean variable is a proposition.
- A **term** is a Boolean variable
- A **literal** is a term or its negation
- A **clause** is a disjunction of literals
- A **sentence** in PL is a conjunction of clauses
- Example: \((a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)\)
- A sentence in PL is **satisfiable** iff
 - we can assign a truth value
 - to each Boolean variables
 - such that the sentence evaluates to true (i.e., holds)
SAT in TCS

• Problem
 – **Given**: A sentence in PL (a complex proposition), which is
 • Boolean variables connected with logical connectives
 • Usually, as a conjunction of clauses (CNF = Conjunctive Normal Form)
 – **Question**:
 • Find an assignment of truth values [0|1] to the variables
 • That makes the sentence true, i.e. the sentence holds
Logic in Programming: Example 1

• Say you need to define a conditional statement as follows:
 – Increment x if the following condition holds
 $(x > 0 \text{ and } x < 10) \text{ or } x=10$
• You may try: $\texttt{If (0<x<10 \text{ OR } x=10) x++;}$
• Can’t be written in C++ or Java
• How can you modify this statement by using logical equivalence
• Answer: $\texttt{If (x>0 \text{ AND } x<=10) x++;}$
Logic in Programming: Example 2

• Say we have the following loop

\[
\text{While } \left((i<\text{size AND } A[i]>10) \text{ OR } (i<\text{size AND } A[i]<0) \text{ OR } (i<\text{size AND } (\text{NOT } (A[i]!=0 \text{ AND NOT } (A[i]>=10)))) \right)
\]

• Is this a good code? Keep in mind:
 – Readability
 – Extraneous code is inefficient and poor style
 – Complicated code is more prone to errors and difficult to debug
 – Solution? Comes later…
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Propositional Equivalences: Introduction

- In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
 - one statement with
 - another equivalent statement
 - (i.e., with the same truth value)

- Below, we discuss
 - Terminology
 - Establishing logical equivalences using truth tables
 - Establishing logical equivalences using known laws (of logical equivalences)
Terminology:
Tautology, Contradictions, Contingencies

• Definitions
 – A compound proposition that is always true, no matter what the truth values of the propositions that occur in it is called a **tautology**
 – A compound proposition that is always false is called a **contradiction**
 – A proposition that is neither a tautology nor a contradiction is a **contingency**

• Examples
 – A simple tautology is $p \lor \neg p$
 – A simple contradiction is $p \land \neg p$
Logical Equivalences: Definition

• **Definition**: Propositions p and q are **logically equivalent** if $p \leftrightarrow q$ is a **tautology**.

• Informally, p and q are equivalent if whenever p is true, q is true, and vice versa.

• **Notation**: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \iff q$

• **Alert**: \equiv is not a logical connective.
Logical Equivalences: Example 1

• Are the propositions \((p \rightarrow q)\) and \((\neg p \lor q)\) logically equivalent?

• To find out, we construct the truth tables for each:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p\rightarrow q)</th>
<th>(\neg p)</th>
<th>(\neg p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The two columns in the truth table are identical, thus we conclude that \((p \rightarrow q) \equiv (\neg p \lor q)\)
Logical Equivalences: Example 1

• Show that (Exercise 25 from Rosen)

\[(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r\]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Propositional Equivalences: Introduction

• In order to manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace
 • one statement with
 • another equivalent statement
 • (i.e., with the same truth value)

• Below, we discuss
 – Terminology
 – Establishing logical equivalences using truth tables
 – Establishing logical equivalences using known laws (of logical equivalences)
Logical Equivalences: Cheat Sheet

- Table of logical equivalences can be found in Rosen (Table 6, page 27)
- These and other can be found in a handout on the course web page:
 http://www.cse.unl.edu/~choueiry/S17-235h/files/LogicalEquivalences.pdf
- Let’s take a quick look at this Cheat Sheet
Using Logical Equivalences: Example 1

• Logical equivalences can be used to construct additional logical equivalences
• Example: Show that \((p \land q) \rightarrow q\) is a tautology

0. \((p \land q) \rightarrow q\)
1. \(\equiv \neg (p \land q) \lor q\) \quad \text{Implication Law on 0}
2. \(\equiv (\neg p \lor \neg q) \lor q\) \quad \text{De Morgan’s Law (1st) on 1}
3. \(\equiv \neg p \lor (\neg q \lor q)\) \quad \text{Associative Law on 2}
4. \(\equiv \neg p \lor 1\) \quad \text{Negation Law on 3}
5. \(\equiv 1\) \quad \text{Domination Law on 4}
My Advice

• Remove double implication
• Replace implication by disjunction
• Push negation inwards
• Distribute
Using Logical Equivalences: Example 2

• Example (Exercise 17)*: Show that \(\neg (p \leftrightarrow q) \equiv (p \leftrightarrow \neg q)\)

 Sometimes it helps to start with the second proposition \((p \leftrightarrow \neg q)\)

0. \((p \leftrightarrow \neg q)\)
1. \(\equiv (p \rightarrow \neg q) \land (\neg q \rightarrow p)\)
 Equivalence Law on 0
2. \(\equiv (\neg p \lor \neg q) \land (q \lor p)\)
 Implication Law on 1
3. \(\equiv \neg((\neg p \lor \neg q) \land (q \lor p))\)
 Double negation on 2
4. \(\equiv \neg((\neg p \lor \neg q) \lor \neg(q \lor p))\)
 De Morgan’s Law...
5. \(\equiv \neg((p \land q) \lor (\neg q \land \neg p))\)
 De Morgan’s Law
6. \(\equiv \neg((p \lor \neg q) \land (p \lor \neg p) \land (q \lor \neg q) \land (q \lor \neg p))\)
 Distribution Law
7. \(\equiv \neg((p \lor \neg q) \land (q \lor \neg p))\)
 Identity Law
8. \(\equiv \neg((q \rightarrow p) \land (p \rightarrow q))\)
 Implication Law
9. \(\equiv \neg(p \leftrightarrow q)\)
 Equivalence Law

*See Table 8 (p 25) but you are not allowed to use the table for the proof
Using Logical Equivalences: Example 3

• Show that \(\neg(q \rightarrow p) \lor (p \land q) \equiv q \)

0. \(\neg(q \rightarrow p) \lor (p \land q) \)

1. \(\equiv \neg(\neg q \lor p) \lor (p \land q) \) \hspace{1cm} \text{Implication Law}

2. \(\equiv (q \land \neg p) \lor (p \land q) \) \hspace{1cm} \text{De Morgan’s & Double negation}

3. \(\equiv (q \land \neg p) \lor (q \land p) \) \hspace{1cm} \text{Commutative Law}

4. \(\equiv q \land (\neg p \lor p) \) \hspace{1cm} \text{Distributive Law}

5. \(\equiv q \land 1 \) \hspace{1cm} \text{Identity Law}

\(\equiv q \) \hspace{1cm} \text{Identity Law}
Proving Logical Equivalences: Summary

• Proving two PL sentences A, B are equivalent using $\text{TT} + \text{EL}$
 1. Verify that the 2 columns of A, B in the truth table are the same (i.e., A, B have the same models)
 2. Verify that the column of $(A \to B) \land (B \to A)$ in the truth table has all 1 entries (it is a tautology)
 3. Apply a sequence of Equivalence Laws
 • Put A, B in CNF, they should be the same
 • Sequence of equivalence laws: Biconditional, implication, moving negation inwards, distributivity
 4. Apply a sequence of Inference Laws
 • Starting from one sentence, usually the most complex one,
 • Until reaching the second sentence
Logic in Programming: Example 2 (revisited)

• Recall the loop

\[
\text{While } ((i<\text{size} \text{ AND } A[i]>10) \text{ OR } (i<\text{size} \text{ AND } A[i]<0) \text{ OR } (i<\text{size} \text{ AND } \text{NOT} (A[i]!=0 \text{ AND } \text{NOT} (A[i]>=10))))
\]

• Now, using logical equivalences, simplify it!

• Using De Morgan’s Law and Distributivity

\[
\text{While } ((i<\text{size}) \text{ AND } ((A[i]>10 \text{ OR } A[i]<0) \text{ OR } (A[i]==0 \text{ OR } A[i]>=10)))
\]

• Noticing the ranges of the 4 conditions of \(A[i]\)

\[
\text{While } ((i<\text{size}) \text{ AND } (A[i]>=10 \text{ OR } A[i]<=0))
\]
In C, C++ and Java, applying the commutative law is not such a good idea.

For example, consider accessing an integer array A of size n:

```c
if (i<n && A[i]==0) i++;
```

is not equivalent to

```c
if (A[i]==0 && i<n) i++;
```